login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322200 L.g.f.: L(x,y) = log( Product_{n>=1} 1/(1 - (x^n + y^n)) ), where L(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k / (n+k) such that L(0,0) = 0, as a symmetric square table of coefficients T(n,k) read by antidiagonals starting with T(0,0) = 0. 13
0, 1, 1, 3, 2, 3, 4, 3, 3, 4, 7, 4, 10, 4, 7, 6, 5, 10, 10, 5, 6, 12, 6, 21, 26, 21, 6, 12, 8, 7, 21, 35, 35, 21, 7, 8, 15, 8, 36, 56, 90, 56, 36, 8, 15, 13, 9, 36, 93, 126, 126, 93, 36, 9, 13, 18, 10, 55, 120, 230, 262, 230, 120, 55, 10, 18, 12, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 12, 28, 12, 78, 232, 537, 792, 994, 792, 537, 232, 78, 12, 28, 14, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 14, 24, 14, 105, 364, 1043, 2002, 3073, 3446, 3073, 2002, 1043, 364, 105, 14, 24, 24, 15, 105, 470, 1365, 3018, 5035, 6435, 6435, 5035, 3018, 1365, 470, 105, 15, 24, 31, 16, 136, 560, 1892, 4368, 8120, 11440, 13050, 11440, 8120, 4368, 1892, 560, 136, 16, 31 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
FORMULA
Sum_{k=0..n} T(n-k,k) = A054598(n) = Sum_{d|n} d*2^(n/d).
Sum_{k=0..n} T(n-k,k) * k/n = A054599(n) = Sum_{d|n} d*2^(n/d - 1).
Sum_{k=0..n} T(n-k,k) * 2^k = A322209(n) = [x^n] log( Product_{k>=1} 1/(1 - (2^k+1)*x^k) ) for n >= 0.
FORMULAS FOR TERMS.
T(n,k) = T(k,n) for n >= 0, k >= 0.
T(0,0) = 0.
T(n,0) = sigma(n) for n > 0.
T(0,k) = sigma(k) for n > 0.
T(n,1) = n+1, for n >= 0.
T(1,k) = k+1, for k >= 0.
T(2*n,2) = T(2*n+1,2) = (n+1)*(2*n+3).
T(2,2*k) = T(2,2*k+1) = (k+1)*(2*k+3).
COLUMN GENERATING FUNCTIONS.
Row 0: log(P(x)), where P(x) = Product_{n>=1} 1/(1 - x^n).
Row 1: 1/(1-x)^2.
Row 2: (3 + x^2)/((1-x)*(1-x^2)^2).
Row 3: (4 - 4*x + 6*x^2 + 2*x^3 + x^4)/((1-x)^2*(1-x^3)^2).
Row 4: (7 - 9*x + 11*x^2 + 7*x^3 + 9*x^4 + x^5 + 5*x^6 + x^7)/((1-x)^2*(1-x^2)*(1-x^4)^2).
Row 5: (6 - 18*x + 33*x^2 - 16*x^3 + 10*x^4 + 4*x^5 + 3*x^6 + 2*x^7 + x^8)/((1-x)^3*(1-x^5)^2).
Row 6: (12 - 41*x + 56*x^2 + 13*x^3 - 49*x^4 - 20*x^5 + 105*x^6 - 126*x^7 + 85*x^8 - 62*x^9 + 24*x^10 - 28*x^11 + 39*x^12 - 25*x^13 + 15*x^14 + x^15 + x^16) / ((1-x)^4*(1-x^2)^2*(1-x^3)*(1-x^6)^2).
EXAMPLE
L.g.f.: L(x,y) = (x + y)/1 + (3*x^2 + 2*x*y + 3*y^2)/2 + (4*x^3 + 3*x^2*y + 3*x*y^2 + 4*y^3)/3 + (7*x^4 + 4*x^3*y + 10*x^2*y^2 + 4*x*y^3 + 7*y^4)/4 + (6*x^5 + 5*x^4*y + 10*x^3*y^2 + 10*x^2*y^3 + 5*x*y^4 + 6*y^5)/5 + (12*x^6 + 6*x^5*y + 21*x^4*y^2 + 26*x^3*y^3 + 21*x^2*y^4 + 6*x*y^5 + 12*y^6)/6 + (8*x^7 + 7*x^6*y + 21*x^5*y^2 + 35*x^4*y^3 + 35*x^3*y^4 + 21*x^2*y^5 + 7*x*y^6 + 8*y^7)/7 + (15*x^8 + 8*x^7*y + 36*x^6*y^2 + 56*x^5*y^3 + 90*x^4*y^4 + 56*x^3*y^5 + 36*x^2*y^6 + 8*x*y^7 + 15*y^8)/8 + ...
such that
exp( L(x,y) ) = Product_{n>=1} 1/(1 - (x^n + y^n)), or
L(x,y) = Sum_{n>=1} -log(1 - (x^n + y^n)),
where
L(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k/(n+k),
in which the constant term is taken to be zero: L(0,0) = 0.
SQUARE TABLE.
The square table of coefficients T(n,k) of x^n*y^k/(n+k) in L(x,y) begins
0, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, ...;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...;
3, 3, 10, 10, 21, 21, 36, 36, 55, 55, 78, 78, 105, ...;
4, 4, 10, 26, 35, 56, 93, 120, 165, 232, 286, 364, ...;
7, 5, 21, 35, 90, 126, 230, 330, 537, 715, 1043, 1365, ...;
6, 6, 21, 56, 126, 262, 462, 792, 1287, 2002, 3018, ...;
12, 7, 36, 93, 230, 462, 994, 1716, 3073, 5035, 8120, ...;
8, 8, 36, 120, 330, 792, 1716, 3446, 6435, 11440, 19448, ...;
15, 9, 55, 165, 537, 1287, 3073, 6435, 13050, 24310, 44010, ...;
13, 10, 55, 232, 715, 2002, 5035, 11440, 24310, 48698, 92378, ...;
18, 11, 78, 286, 1043, 3018, 8120, 19448, 44010, 92378, 185310, ...;
12, 12, 78, 364, 1365, 4368, 12376, 31824, 75582, 167960, 352716, ...; ...
TRIANGLE.
Alternatively, this sequence may be written as a triangle, starting as
0;
1, 1;
3, 2, 3;
4, 3, 3, 4;
7, 4, 10, 4, 7;
6, 5, 10, 10, 5, 6;
12, 6, 21, 26, 21, 6, 12;
8, 7, 21, 35, 35, 21, 7, 8;
15, 8, 36, 56, 90, 56, 36, 8, 15;
13, 9, 36, 93, 126, 126, 93, 36, 9, 13;
18, 10, 55, 120, 230, 262, 230, 120, 55, 10, 18;
12, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 12;
28, 12, 78, 232, 537, 792, 994, 792, 537, 232, 78, 12, 28;
14, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 14;
24, 14, 105, 364, 1043, 2002, 3073, 3446, 3073, 2002, 1043, 364, 105, 14, 24;
24, 15, 105, 470, 1365, 3018, 5035, 6435, 6435, 5035, 3018, 1365, 470, 105, 15, 24;
31, 16, 136, 560, 1892, 4368, 8120, 11440, 13050, 11440, 8120, 4368, 1892, 560, 136, 16, 31; ...
where L(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n-k,k)*x^(n-k)*y^k / n.
PROG
(PARI)
{L = sum(n=1, 61, -log(1 - (x^n + y^n) +O(x^61) +O(y^61)) ); }
{T(n, k) = polcoeff( (n+k)*polcoeff( L, n, x), k, y)}
for(n=0, 16, for(k=0, 16, print1( T(n, k), ", ") ); print(""))
CROSSREFS
Cf. A322210 (exp), A322201 (main diagonal), A322203, A322205, A322207, A322209.
Cf. A054598 (antidiagonal sums), A054599.
Sequence in context: A267376 A267380 A217287 * A028292 A256244 A233386
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 30 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 19:05 EDT 2024. Contains 371751 sequences. (Running on oeis4.)