login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322199
G.f.: Product_{n>=1} 1/(1 - (2^n + 1)*x^n).
2
1, 3, 14, 51, 195, 663, 2345, 7707, 25744, 82980, 267812, 846150, 2676163, 8337189, 25947281, 80053128, 246468551, 754366239, 2305139065, 7014997404, 21317567297, 64606020012, 195557995054, 590855420007, 1783577678925, 5377112705874, 16199746640340, 48763788775530, 146712079122114, 441146762285301, 1326002750336702, 3984148679940612, 11967872331787643
OFFSET
0,2
LINKS
FORMULA
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} A322200(n-k,k) * 2^k ).
a(n) ~ c * 3^n, where c = Product_{k>=2} 1/(1 - (2^k + 1)/3^k) = 6.49344992975096517443610066284481821741772051973643441550853873760083... - Vaclav Kotesovec, Oct 04 2020
EXAMPLE
G.f.: A(x) = 1 + 3*x + 14*x^2 + 51*x^3 + 195*x^4 + 663*x^5 + 2345*x^6 + 7707*x^7 + 25744*x^8 + 82980*x^9 + 267812*x^10 + 846150*x^11 + 2676163*x^12 + ...
such that
A(x) = 1/( (1 - 3*x) * (1 - 5*x^2) * (1 - 9*x^3) * (1 - 17*x^4) * (1 - 33*x^5) * (1 - 65*x^6) * (1 - 129*x^7) * ... * (1 - (2^n+1)*x^n) * ... ).
RELATED SERIES.
log( A(x) ) = 3*x + 19*x^2/2 + 54*x^3/3 + 199*x^4/4 + 408*x^5/5 + 1612*x^6/6 + 3090*x^7/7 + 11023*x^8/8 + 26487*x^9/9 + 80994*x^10/10 + 199686*x^11/11 + 676540*x^12/12 + ... + A322209(n)*x^n/n + ...
PROG
(PARI) {a(n) = polcoeff( 1/prod(m=1, n, 1 - (2^m+1)*x^m +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A203196 A359253 A320826 * A192882 A351690 A056076
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 01 2018
STATUS
approved