The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A320826 Expansion of x*(1 - 4*x)^(3/2)/(3*x - 1)^2. 3
 0, 1, 0, -3, -14, -51, -168, -521, -1542, -4365, -11740, -29439, -65670, -112273, -28344, 1018689, 6961550, 34606929, 151831044, 623095683, 2453975622, 9402575805, 35339538912, 130994480547, 480676041954, 1750847208621, 6343667488692, 22899720430251, 82466180250590 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = c(n)*h(n) where c(n) = Catalan(n)*(3*n*(n + 1))/(2*(2*n-5)*(2*n-3)*(2*n-1)) = (-4)^(n-1)*binomial(3/2, n-1) and h(n) = hypergeom([2, 1 - n], [7/2 - n], 3/4). A320826(n) = A320825(n) - A320827(n). MAPLE c := n -> (-4)^(n-1)*binomial(3/2, n-1): h := n -> hypergeom([2, 1 - n], [7/2 - n], 3/4): A320826 := n -> c(n)*h(n): seq(simplify(A320826(n)), n=0..28); MATHEMATICA CoefficientList[Series[(x (1 - 4 x)^(3/2))/(3 x - 1)^2, {x, 0, 28}], x] PROG (PARI) x='x+O('x^30); concat([0], Vec(x*(1-4*x)^(3/2)/(1-3*x)^2)) \\ G. C. Greubel, Oct 27 2018 (Magma) m:=30; R:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!(x*(1-4*x)^(3/2)/(1-3*x)^2)); // G. C. Greubel, Oct 27 2018 CROSSREFS Cf. A002421, A320825, A320827. Sequence in context: A084150 A203196 A359253 * A322199 A192882 A351690 Adjacent sequences: A320823 A320824 A320825 * A320827 A320828 A320829 KEYWORD sign AUTHOR Peter Luschny, Oct 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 22:03 EDT 2024. Contains 374544 sequences. (Running on oeis4.)