The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A320824 T(n, k) = (m*n)!/(k!*(n-k)!)^m with m = 3; triangle read by rows, 0 <= k <= n. 2
 1, 6, 6, 90, 720, 90, 1680, 45360, 45360, 1680, 34650, 2217600, 7484400, 2217600, 34650, 756756, 94594500, 756756000, 756756000, 94594500, 756756, 17153136, 3705077376, 57891834000, 137225088000, 57891834000, 3705077376, 17153136 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Rows n=0..100 of triangle, flattened FORMULA T(n, k) = ((3*n)!/(n!)^3) * binomial(n, k)^3 = A006480(n)*A181543(n, k). EXAMPLE Triangle starts: [0] 1; [1] 6, 6; [2] 90, 720, 90; [3] 1680, 45360, 45360, 1680; [4] 34650, 2217600, 7484400, 2217600, 34650; [5] 756756, 94594500, 756756000, 756756000, 94594500, 756756; MAPLE T := (n, k, m) -> (m*n)!/(k!*(n-k)!)^m: seq(seq(T(n, k, 3), k=0..n), n=0..7); MATHEMATICA Table[((3*n)!/(n!)^3)*Binomial[n, k]^3, {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 27 2018 *) PROG (PARI) t(n, k) = (3*n)!/(k!*(n-k)!)^3 trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print("")) /* Print initial 6 rows of triangle as follows: */ trianglerows(6) \\ Felix Fröhlich, Oct 21 2018 (Magma) [[(Factorial(3*n)/(Factorial(n))^3)*Binomial(n, k)^3: k in [0..n]]: n in [0..15]]; // G. C. Greubel, Oct 27 2018 (GAP) Flat(List([0..6], n->List([0..n], k->Factorial(3*n)/(Factorial(k)*Factorial(n-k))^3))); # Muniru A Asiru, Oct 27 2018 CROSSREFS Cf. A007318 (Pascal, m=1), A069466 (m=2), this sequence (m=3). Cf. A006480, A181543. Sequence in context: A146892 A347916 A361738 * A085804 A012125 A267139 Adjacent sequences: A320821 A320822 A320823 * A320825 A320826 A320827 KEYWORD nonn,tabl AUTHOR Peter Luschny, Oct 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 18:59 EDT 2024. Contains 374388 sequences. (Running on oeis4.)