login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361738
Diagonal of rational function 1/(1 - (x^2 + y^2 + z^2 + x^3*y*z)).
3
1, 0, 6, 6, 90, 180, 1770, 5040, 39690, 140280, 964656, 3922380, 24755346, 110486376, 660153780, 3137330196, 18103340970, 89794566576, 506892467796, 2589310074780, 14419819659960, 75181803891480, 415298937771900, 2196704341517400, 12078576672927570
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (3*k)!/k!^3 * binomial(k,n-2*k).
From Vaclav Kotesovec, Mar 23 2023: (Start)
Recurrence: (n-1)*n^2*a(n) = -(n-1)^2*n*a(n-1) + 3*(n-1)*(3*n - 4)*(3*n - 2)*a(n-2) + 18*(n-2)*(3*n^2 - 6*n + 1)*a(n-3) + 27*(n-3)*(n-2)*n*a(n-4).
a(n) ~ sqrt(3) * (6*cos(Pi/9))^n / (2*Pi*n). (End)
MATHEMATICA
Table[Sum[(3*k)!/k!^3 * Binomial[k, n-2*k], {k, 0, n/2}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 23 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\2, (3*k)!/k!^3*binomial(k, n-2*k));
CROSSREFS
Cf. A361729.
Sequence in context: A065239 A146892 A347916 * A320824 A085804 A012125
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 22 2023
STATUS
approved