OFFSET
0,2
COMMENTS
Conjecture: Euler transform of A123611. - Vaclav Kotesovec, Dec 12 2020
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..400
FORMULA
a(n) ~ c * 4^n / n^(3/2), where c = 4/sqrt(Pi) * Product_{j>=1} (2^(j+1) * (2^j - sqrt(4^j - 1)))^2 = 2.704933139869066452954644773467... - Vaclav Kotesovec, Jun 18 2019, updated Dec 12 2020
G.f.: Product_{j>=1} c(x^j)^2, where c(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of A000108. - Vaclav Kotesovec, Dec 12 2020
EXAMPLE
G.f.: A(x) = 1 + 2*x + 7*x^2 + 20*x^3 + 63*x^4 + 190*x^5 + 613*x^6 + 1976*x^7 + 6604*x^8 + 22368*x^9 + 77270*x^10 + 270208*x^11 + 956780*x^12 + ...
such that
log( A(x) ) = 2*x + 10*x^2/2 + 26*x^3/3 + 90*x^4/4 + 262*x^5/5 + 994*x^6/6 + 3446*x^7/7 + 13050*x^8/8 + 48698*x^9/9 + 185310*x^10/10 + ... + A322201(n)*x^n/n + ...
sqrt(A(x)) = 1 + x + 3*x^2 + 7*x^3 + 20*x^4 + 54*x^5 + 168*x^6 + 518*x^7 + 1702*x^8 + 5672*x^9 + 19413*x^10 + 67329*x^11 + 236994*x^12 + ... + A322204(n)*x^n + ...
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[Sum[CatalanNumber[k]*x^(j*k), {k, 0, nmax/j}]^2, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 12 2020 *)
nmax = 30; CoefficientList[Series[Product[(1 - Sqrt[1 - 4*x^k])/(2*x^k), {k, 1, nmax}]^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 12 2020 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 30 2018
STATUS
approved