OFFSET
0,2
COMMENTS
All the terms for n >= 1 so far are twice an odd integer.
In terms of Young diagrams, this counts how many original copies one gets by first adding n boxes and then removing n boxes while maintaining an allowed Young diagram shape.
Also a(n) is the total over all partitions n of the multiplicities squared, partition by partition, in the LR-expansion of (s_lambda |- n)^2. Notice that this is different from A067855 where the multipliciteis are first summed over all lambda |-n, and finally squared, then summed.
EXAMPLE
For n=3,
{3} -> 4 s_{3} + 2 s_{2,1}
{2,1} -> 4 s_{3} + 10 s_{2,1} + 4 s_{1,1,1} and
{1,1,1} -> 2 s_{2,1} + 4 s_{1,1,1}
so a(3) = 4 + 10 + 4 = 18.
Also,
s(3)^2 -> s(6)+s(3;3)+s(4;2)+s(5,1) -> {1,1,1,1} ->{1,1,1,1} ->4
s(2;1)^2 ->s(4;2)+s(4;1;1)+s(3;3)+2 s(3;2;1)+s(3;1;1;1)+s(2;2;2)+s(2;2;1;1)
-> {1,1,1,2,1,1,1} -> {1,1,1,4,1,1,1} -> 10
s(1;1;1)^2 -> s(2;2;2)+s(2;2;1;1)+s(2;1;1;1;1)+s(1^6) ->{1,1,1,1} ->{1,1,1,1} ->4
MATHEMATICA
(* with 'LRRule' and 'skewschur' defined in http://users.telenet.be/Wouter.Meeussen/ToolBox.nb *)
Tr/@ Table[Coefficient[
Total[skewschur[#, \[Lambda], n] & /@
LRRule[\[Lambda], \[Lambda]]], ss[\[Lambda], n] ], {n,
13}, {\[Lambda], Partitions[n]}];
also Table[Total[
Table[Map[Last, Tally[LRRule[\[Lambda], \[Lambda]]] ]^2, {\[Lambda],
Partitions[n]}], 2], {n, 13}];
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Wouter Meeussen, Mar 07 2023
STATUS
approved