login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total over all partitions lambda of n, of factors of s_lambda in the skew Schur function s_( nu/lambda ) with (s_lambda)^2 = Sum( C(nu, lambda, lambda) s_nu ).
1

%I #17 Apr 09 2023 02:31:00

%S 1,2,6,18,50,138,430,1242,3666,10938,34598,108098,338634,1058370

%N Total over all partitions lambda of n, of factors of s_lambda in the skew Schur function s_( nu/lambda ) with (s_lambda)^2 = Sum( C(nu, lambda, lambda) s_nu ).

%C All the terms for n >= 1 so far are twice an odd integer.

%C In terms of Young diagrams, this counts how many original copies one gets by first adding n boxes and then removing n boxes while maintaining an allowed Young diagram shape.

%C Also a(n) is the total over all partitions n of the multiplicities squared, partition by partition, in the LR-expansion of (s_lambda |- n)^2. Notice that this is different from A067855 where the multipliciteis are first summed over all lambda |-n, and finally squared, then summed.

%e For n=3,

%e {3} -> 4 s_{3} + 2 s_{2,1}

%e {2,1} -> 4 s_{3} + 10 s_{2,1} + 4 s_{1,1,1} and

%e {1,1,1} -> 2 s_{2,1} + 4 s_{1,1,1}

%e so a(3) = 4 + 10 + 4 = 18.

%e Also,

%e s(3)^2 -> s(6)+s(3;3)+s(4;2)+s(5,1) -> {1,1,1,1} ->{1,1,1,1} ->4

%e s(2;1)^2 ->s(4;2)+s(4;1;1)+s(3;3)+2 s(3;2;1)+s(3;1;1;1)+s(2;2;2)+s(2;2;1;1)

%e -> {1,1,1,2,1,1,1} -> {1,1,1,4,1,1,1} -> 10

%e s(1;1;1)^2 -> s(2;2;2)+s(2;2;1;1)+s(2;1;1;1;1)+s(1^6) ->{1,1,1,1} ->{1,1,1,1} ->4

%t (* with 'LRRule' and 'skewschur' defined in http://users.telenet.be/Wouter.Meeussen/ToolBox.nb *)

%t Tr/@ Table[Coefficient[

%t Total[skewschur[#, \[Lambda], n] & /@

%t LRRule[\[Lambda], \[Lambda]]], ss[\[Lambda], n] ], {n,

%t 13}, {\[Lambda], Partitions[n]}];

%t also Table[Total[

%t Table[Map[Last, Tally[LRRule[\[Lambda], \[Lambda]]] ]^2, {\[Lambda],

%t Partitions[n]}], 2], {n, 13}];

%Y Cf. A067855, A322210.

%K nonn,more,hard

%O 0,2

%A _Wouter Meeussen_, Mar 07 2023