login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A344618 Reverse-alternating sums of standard compositions (A066099). Alternating sums of the compositions ranked by A228351. 42
0, 1, 2, 0, 3, -1, 1, 1, 4, -2, 0, 2, 2, 0, 2, 0, 5, -3, -1, 3, 1, 1, 3, -1, 3, -1, 1, 1, 3, -1, 1, 1, 6, -4, -2, 4, 0, 2, 4, -2, 2, 0, 2, 0, 4, -2, 0, 2, 4, -2, 0, 2, 2, 0, 2, 0, 4, -2, 0, 2, 2, 0, 2, 0, 7, -5, -3, 5, -1, 3, 5, -3, 1, 1, 3, -1, 5, -3, -1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Up to sign, same as A124754.

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

LINKS

Table of n, a(n) for n=0..79.

EXAMPLE

The sequence of nonnegative integers together with the corresponding standard compositions and their reverse-alternating sums begins:

  0:     () ->  0    15: (1111) ->  0    30:  (1112) ->  1

  1:    (1) ->  1    16:    (5) ->  5    31: (11111) ->  1

  2:    (2) ->  2    17:   (41) -> -3    32:     (6) ->  6

  3:   (11) ->  0    18:   (32) -> -1    33:    (51) -> -4

  4:    (3) ->  3    19:  (311) ->  3    34:    (42) -> -2

  5:   (21) -> -1    20:   (23) ->  1    35:   (411) ->  4

  6:   (12) ->  1    21:  (221) ->  1    36:    (33) ->  0

  7:  (111) ->  1    22:  (212) ->  3    37:   (321) ->  2

  8:    (4) ->  4    23: (2111) -> -1    38:   (312) ->  4

  9:   (31) -> -2    24:   (14) ->  3    39:  (3111) -> -2

  10:  (22) ->  0    25:  (131) -> -1    40:    (24) ->  2

  11: (211) ->  2    26:  (122) ->  1    41:   (231) ->  0

  12:  (13) ->  2    27: (1211) ->  1    42:   (222) ->  2

  13: (121) ->  0    28:  (113) ->  3    43:  (2211) ->  0

  14: (112) ->  2    29: (1121) -> -1    44:   (213) ->  4

Triangle begins (row lengths A011782):

  0

  1

  2  0

  3 -1  1  1

  4 -2  0  2  2  0  2  0

  5 -3 -1  3  1  1  3 -1  3 -1  1  1  3 -1  1  1

MATHEMATICA

sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]], {i, Length[y]}];

stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]]

Table[sats[stc[n]], {n, 0, 100}]

CROSSREFS

Up to sign, same as the reverse version A124754.

The version for Heinz numbers of partitions is A344616.

Positions of zeros are A344619.

A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.

A103919 counts partitions by sum and alternating sum (reverse: A344612).

A316524 is the alternating sum of the prime indices of n (reverse: A344616).

A116406 counts compositions with alternating sum >= 0.

A344610 counts partitions by sum and positive reverse-alternating sum.

A344611 counts partitions of 2n with reverse-alternating sum >= 0.

All of the following pertain to compositions in standard order:

- The length is A000120.

- Converting to reversed ranking gives A059893.

- The rows are A066099.

- The sum is A070939.

- The runs are counted by A124767.

- The reversed version is A228351.

- Strict compositions are ranked by A233564.

- Constant compositions are ranked by A272919.

- The Heinz number is A333219.

- Anti-run compositions are ranked by A333489.

Cf. A000070, A000097, A003242, A028260, A119899, A239830, A344605, A344607, A344608, A344650, A344739.

Sequence in context: A124756 A113504 A276165 * A124754 A353923 A246370

Adjacent sequences:  A344615 A344616 A344617 * A344619 A344620 A344621

KEYWORD

sign,tabf

AUTHOR

Gus Wiseman, Jun 03 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 11:30 EDT 2022. Contains 354086 sequences. (Running on oeis4.)