Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2619 N1036 #34 May 03 2022 11:06:05
%S 3,7,10,19,32,34,37,51,81,119,122,134,157,160,161,174,221,252,254,294,
%T 305,309,364,371,405,580,682,734,756,763,776,959,1028,1105,1120,1170,
%U 1205,1550,1570,1576,1851,1930,2028,2404,2411,2565,2675,2895,2905,2940,3133,3211,3240,3428
%N Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)Pi*n^(3/2), P(n) = A(n) - V(n); A000092 gives values of n where |P(n)| sets a new record; sequence gives (nearest integer to, I believe) P(A000092(n)).
%C Record values of (absolute values of) A210641 = A117609-A210639. It appears that the records occur always at positive elements of that sequence. (One could add an initial a(0)=1.) - _M. F. Hasler_, Mar 26 2012
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Seth A. Troisi, <a href="/A000223/b000223.txt">Table of n, a(n) for n = 1..131</a>
%H W. C. Mitchell, <a href="http://dx.doi.org/10.1090/S0025-5718-1966-0195834-3">The number of lattice points in a k-dimensional hypersphere</a>, Math. Comp., 20 (1966), 300-310.
%F a(n) = |A210641(A000092(n))|. - _M. F. Hasler_, Mar 26 2012
%t nmax = 3*10^4; P[n_] := Sum[SquaresR[3, k], {k, 0, n}] - Round[(4/3)*Pi* n^(3/2)]; record = 0; A000223 = Reap[For[n = 1, n <= nmax, n++, If[(p = Abs[pn = P[n]]) > record, record = p; Print[pn]; Sow[pn]]]][[2, 1]] (* _Jean-François Alcover_, Feb 05 2016 *)
%o (PARI) m=0;for(n=0,1e4, m<abs(A210641(n)) & print1(m=A210641(n)",")) /* This would print a negative value in case the record in absolute value occured for A117609(n)<A210639(n), which does not happen for n<10^4. */ \\ _M. F. Hasler_, Mar 26 2012
%Y Cf. A000323, A000036, A000092, A000413, A000099.
%K nonn
%O 1,1
%A _N. J. A. Sloane_
%E Revised Jun 28 2005