The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077417 Chebyshev T-sequence with Diophantine property. 15
 1, 11, 131, 1561, 18601, 221651, 2641211, 31472881, 375033361, 4468927451, 53252096051, 634556225161, 7561422605881, 90102515045411, 1073668757939051, 12793922580223201, 152453402204739361, 1816646903876649131, 21647309444315050211 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS 7*a(n)^2 - 5*b(n)^2 = 2 with companion sequence b(n) = A077416(n), n>=0. a(n) = L(n,12), where L is defined as in A108299; see also A077416 for L(n,-12). - Reinhard Zumkeller, Jun 01 2005 [a(n), A004191(n)] = the 2 X 2 matrix [1,10; 1,11]^(n+1) * [1,0]. - Gary W. Adamson, Mar 19 2008 Hankel transform of A174227. - Paul Barry, Mar 12 2010 Alternate denominators of the continued fraction convergents to sqrt(35), see A041059. - James R. Buddenhagen, May 20 2010 For positive n, a(n) equals the permanent of the (2n)X(2n) tridiagonal matrix with sqrt(10)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011 Positive values of x (or y) satisfying x^2 - 12xy + y^2 + 10 = 0. - Colin Barker, Feb 09 2014 a(n) = a(-1-n) for all n in Z. - Michael Somos, Jun 29 2019 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13. Tanya Khovanova, Recursive Sequences J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014. Index entries for sequences related to Chebyshev polynomials. Index entries for linear recurrences with constant coefficients, signature (12,-1). FORMULA a(n) = 12*a(n-1) - a(n-2), a(-1)=1, a(0)=1. a(n) = S(n, 12) - S(n-1, 12) = T(2*n+1, sqrt(14)/2)/(sqrt(14)/2) with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 12)=A004191(n). G.f.: (1-x)/(1-12*x+x^2). a(n) = (ap^(2*n+1) + am^(2*n+1))/sqrt(14) with ap := (sqrt(7)+sqrt(5))/sqrt(2) and am := (sqrt(7)-sqrt(5))/sqrt(2). a(n) = sqrt((5*A077416(n)^2 + 2)/7). a(n)*a(n+3) = 120 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004 EXAMPLE G.f. = 1 + 11*x + 131*x^2 + 1561*x^3 + 18601*x^4 221651*x^5 + 2641211*x^6 + ... MATHEMATICA CoefficientList[Series[(1 - x)/(1 - 12 x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *) LinearRecurrence[{12, -1}, {1, 11}, 30] (* Harvey P. Dale, Apr 09 2015 *) a[ n_] := With[{x = Sqrt[7/2]}, ChebyshevT[2 n + 1, x]/x] // Expand; (* Michael Somos, Jun 29 2019 *) PROG (Magma) I:=[1, 11]; [n le 2 select I[n] else 12*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 10 2014 (PARI) x='x+O('x^30); Vec((1-x)/(1-12*x+x^2)) \\ G. C. Greubel, Jan 18 2018 (PARI) {a(n) = my(x = quadgen(56)/2); simplify(polchebyshev(2*n + 1, 1, x)/x)}; /* Michael Somos, Jun 29 2019 */ CROSSREFS Cf. A072256(n) with companion A054320(n-1), n>=1. Row 12 of array A094954. Cf. A004191. Cf. A041059. [James R. Buddenhagen, May 20 2010] Cf. similar sequences listed in A238379. Sequence in context: A076255 A076357 A015606 * A082148 A075509 A061113 Adjacent sequences: A077414 A077415 A077416 * A077418 A077419 A077420 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Nov 29 2002 EXTENSIONS More terms from Vincenzo Librandi, Feb 10 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 20:28 EDT 2024. Contains 373401 sequences. (Running on oeis4.)