The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033275 Number of diagonal dissections of an n-gon into 3 regions. 8

%I

%S 0,5,21,56,120,225,385,616,936,1365,1925,2640,3536,4641,5985,7600,

%T 9520,11781,14421,17480,21000,25025,29601,34776,40600,47125,54405,

%U 62496,71456,81345,92225,104160,117216,131461,146965,163800,182040,201761,223041,245960

%N Number of diagonal dissections of an n-gon into 3 regions.

%C Number of standard tableaux of shape (n-3,2,2) (n>=5). - _Emeric Deutsch_, May 13 2004

%C Number of short bushes with n+1 edges and 3 branch nodes (i.e., nodes with outdegree at least 2). A short bush is an ordered tree with no nodes of outdegree 1. Example: a(5)=5 because the only short bushes with 6 edges and 3 branch nodes are the five full binary trees with 6 edges. Column 3 of A108263. - _Emeric Deutsch_, May 29 2005

%H Indranil Ghosh, <a href="/A033275/b033275.txt">Table of n, a(n) for n = 4..10000</a>

%H D. Beckwith, <a href="http://www.jstor.org/stable/2589081">Legendre polynomials and polygon dissections?</a>, Amer. Math. Monthly, 105 (1998), 256-257.

%H F. R. Bernhart, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00054-0">Catalan, Motzkin and Riordan numbers</a>, Discr. Math., 204 (1999), 73-112.

%H R. C. Read, <a href="http://dx.doi.org/10.1007/BF03031688">On general dissections of a polygon</a>, Aequat. Math. 18 (1978) 370-388, Table 1.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = binomial(n+1, 2)*binomial(n-3, 2)/3.

%F G.f.: z^5*(5-4*z+z^2)/(1-z)^5. - _Emeric Deutsch_, May 29 2005

%t f[n_]:=n*(n+2)*(n+4)/3; s=0;lst={};Do[AppendTo[lst,s+=f[n]],{n,0,6!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Oct 08 2009 *)

%t a[4]=0;a[n_]:=Binomial[n+1,2]*Binomial[n-3,2]/3;Table[a[n],{n,4,43}] (* _Indranil Ghosh_, Feb 20 2017 *)

%o (PARI) concat(0, Vec(z^5*(5-4*z+z^2)/(1-z)^5 + O(z^60))) \\ _Michel Marcus_, Jun 18 2015

%o (PARI) a(n) = binomial(n+1, 2)*binomial(n-3, 2)/3 \\ _Charles R Greathouse IV_, Feb 20 2017

%o (Sage)

%o def A033275(n): return (binomial(n+1, 2)*binomial(n-3, 2))//3

%o print([A033275(n) for n in range(4,50)]) # _Peter Luschny_, Apr 03 2020

%Y 2nd skew subdiagonal of A033282.

%Y Cf. A033276, A108263.

%K nonn,easy

%O 4,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 18:48 EDT 2020. Contains 334854 sequences. (Running on oeis4.)