|
|
A006858
|
|
Expansion of x*(1 + x)*(1 + 6*x + x^2)/(1 - x)^7.
(Formerly M4935)
|
|
10
|
|
|
0, 1, 14, 84, 330, 1001, 2548, 5712, 11628, 21945, 38962, 65780, 106470, 166257, 251720, 371008, 534072, 752913, 1041846, 1417780, 1900514, 2513049, 3281916, 4237520, 5414500, 6852105, 8594586, 10691604, 13198654, 16177505, 19696656
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Arises in enumerating paths in the plane.
a(n+1) is the determinant of the n X n Hankel matrix whose first row is the Catalan numbers C_n (A000108) beginning at C_4 = 14. Example (n=3): det[{{14, 42, 132}, {42, 132, 429}, {132, 429, 1430}}] = 330. - David Callan, Mar 30 2007
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Stanley, R. P., Enumerative Combinatorics, Volume 1 (1986), p. 221, Example 4.5.18.
|
|
LINKS
|
P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
|
|
FORMULA
|
|
|
EXAMPLE
|
G.f. = x + 14*x^2 + 84*x^3 + 330*x^4 + 1001*x^5 + 2548*x^6 + 5712*x^7 + ...
|
|
MAPLE
|
series((x+7*x^2+7*x^3+x^4)/(1-x)^7, x, 50);
b:=binomial; t72b:= proc(a, k) ((a+k+1)/(a+1)) * b(k+2*a+1, k)*b(k+3*a/2+1, k)/(b(k+a/2, k)); end; [seq(t72b(1, k), k=0..40)];
|
|
MATHEMATICA
|
a[n_]:= (n+1)*Binomial[2n+4, 5]/12;
|
|
PROG
|
(PARI) a(n) = (n+1)*binomial(2*n+4, 5)/12; \\ Michel Marcus, Oct 13 2016
(Sage) [(n+1)*binomial(2*n+4, 5)/12 for n in (0..30)] # G. C. Greubel, Dec 14 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|