OFFSET
0,1
COMMENTS
The multiplying factor 6 appears to come from the ratio of a(1)/a(0) of the sequence. Each of the lines of tables (V vs VII) or (VI vs VIII) in oddwheel.com/ImaginaryB.html generates this factor.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
E. Gutierrez, Table of Tuples for Square of Squares (Part IC)
Index entries for linear recurrences with constant coefficients, signature (6,-1).
FORMULA
a(0)=14, a(1)= 84, a(n+1)= a(n)*6 - a(n-1).
G.f.: 14 / (1-6*x+x^2). - Colin Barker, May 18 2016
E.g.f.: 7*(3*sqrt(2)*sinh(2*sqrt(2)*x) + 4*cosh(2*sqrt(2)*x))*exp(3*x)/2. - Ilya Gutkovskiy, May 18 2016
EXAMPLE
a(2) = 84*6 -14 = 490; a(3) = 490*6 - 84 = 2856; a(4) = 2856*6 - 490 = 16646.
MATHEMATICA
CoefficientList[Series[14/(1 - 6 x + x^2), {x, 0, 21}], x] (* Michael De Vlieger, May 18 2016 *)
PROG
(PARI) Vec(14/(1-6*x+x^2) + O(x^50)) \\ Colin Barker, May 18 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eddie Gutierrez, May 17 2016
STATUS
approved