login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055079
Smallest number with exactly n nonprime divisors.
9
1, 4, 8, 12, 30, 24, 36, 48, 60, 72, 2048, 192, 120, 216, 180, 288, 240, 432, 576, 420, 360, 864, 1296, 900, 960, 1728, 720, 840, 1080, 3456, 9216, 1260, 1440, 6912, 34359738368, 1680, 2160, 10368, 2880, 15552, 15360, 3600, 4620, 2520, 4320, 31104
OFFSET
1,2
COMMENTS
a(n)<=2^n; see A057838 for the indices n where a(n)=2^n.
LINKS
FORMULA
a(n)=Min{k; A000005(k)-A001221(k)=A033273(k)=n}
EXAMPLE
a(5) = 30 because it is the first integer which has five nonprime divisors (1, 6, 10, 15 and 30; the divisors 2, 3 and 5 are prime).
a(35) = 2^35 = 34359738368.
a(71) = 2^71 = 2361183241434822606848.
a(191) = 2^191 = 3138550867693340381917894711603833208051177722232017256448.
MATHEMATICA
a = Table[0, {100} ]; Do[ c = Count[ PrimeQ[ Divisors[ n ] ], False]; If[ c < 101 && a[[ c ]] == 0, a[[ c ]] = n], {n, 2, 10077696} ];
Table[SelectFirst[Table[{n, Count[Divisors[n], _?(!PrimeQ[#]&)]}, {n, 10000}], #[[2]]==k&], {k, 34}][[;; , 1]] (* The program generates the first 34 terms of the sequence. *) (* Harvey P. Dale, Mar 04 2024 *)
PROG
(PARI) sme(n) = {k = 1; while (sumdiv(k, d, ! isprime(d)) != n, k++); k; } \\ Michel Marcus, Dec 13 2013
(Haskell)
a055079 n = head [x | x <- [1..], a033273 x == n]
-- Reinhard Zumkeller, Dec 16 2013
KEYWORD
nonn,nice
AUTHOR
Labos Elemer, Jun 13 2000
EXTENSIONS
More terms from Robert G. Wilson v, Nov 20 2000
Edited by Ray Chandler, Aug 12 2010
STATUS
approved