Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 27 2023 12:18:46
%S 1,-1,-1,1,-1,1,-1,-2,1,1,-1,-1,-1,1,1,3,-1,-1,-1,-1,1,1,-1,2,1,1,-2,
%T -1,-1,-1,-1,-5,1,1,1,1,-1,1,1,2,-1,-1,-1,-1,-1,1,-1,-3,1,-1,1,-1,-1,
%U 2,1,2,1,1,-1,1,-1,1,-1,8,1,-1,-1,-1,1,-1,-1,-2,-1,1,-1,-1,1,-1,-1,-3,3,1,-1,1,1,1,1,2,-1,1,1,-1,1,1,1,5,-1,-1,-1,1,-1,-1,-1,2,-1
%N Dirichlet inverse of A295316, characteristic function of exponentially odd numbers.
%C Multiplicative because A295316 is.
%H Antti Karttunen, <a href="/A355936/b355936.txt">Table of n, a(n) for n = 1..100000</a>
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A295316(n/d) * a(d).
%F Multiplicative with a(p^e) = (-1)^e * Fibonacci(e). - _Sebastian Karlsson_, Jul 24 2022
%F Sum_{k=1..n} abs(a(k)) ~ c * n, where c = Product_{primes p} (1 + 1/(p^3 - p^2 - p)) = 1.6256655992867552241340804110236555506570411887342367924818823782775... - _Vaclav Kotesovec_, Feb 27 2023
%t s[n_] := If[AllTrue[FactorInteger[n][[;; , -1]], OddQ], 1, 0]; a[1] = 1; a[n_] := -DivisorSum[n, a[#]*s[n/#] &, # < n &]; Array[a, 100] (* _Amiram Eldar_, Jul 21 2022 *)
%o (PARI)
%o A295316(n) = factorback(apply(e -> (e%2), factorint(n)[, 2]));
%o memoA355936 = Map();
%o A355936(n) = if(1==n,1,my(v); if(mapisdefined(memoA355936,n,&v), v, v = -sumdiv(n,d,if(d<n,A295316(n/d)*A355936(d),0)); mapput(memoA355936,n,v); (v)));
%Y Cf. A268335, A295316.
%Y Cf. also A355826.
%Y Cf. A000045.
%K sign,mult
%O 1,8
%A _Antti Karttunen_, Jul 21 2022