Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #24 Nov 29 2022 02:41:30
%S 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,4,1,1,
%T 1,1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,2,1,1,1,1,
%U 1,1,1,2,1,1,1,1,1,1,1,3,3,1,1,1,1,1,1
%N The e-unitary Euler function: a(1) = 1, a(n) = Product uphi(e(i)) for n = Product p(i)^e(i), where uphi is the unitary totient function (A047994).
%C The unitary version of A072911.
%C For n = Product p(i)^e(i) > 1, a(n) is the number of divisors d of n such that d and n are exponentially unitary coprime, i.e., d = Product p(i)^f(i) where 1 <= f(i) <= e(i) and uGCD(f(i), e(i)) = 1 for any i, where uGCD(m, n) is the largest divisor of m that is a unitary divisor of n.
%H Amiram Eldar, <a href="/A321167/b321167.txt">Table of n, a(n) for n = 1..10000</a>
%H Nicusor Minculete and László Tóth, <a href="http://ac.inf.elte.hu/Vol_035_2011/elte_annales_35_jav_vagott.pdf#page=205">Exponential unitary divisors</a>, Annales Univ. Sci. Budapest., Sect. Comp. Vol. 35 (2011), pp. 205-216.
%F Sum_{k=1..n} a(k) ~ c_1 * n + c_2 * n^(1/3) + O(n^(1/4 + eps)), where c_1 = A358658 and c_2 is a constant (see Minculete and Tóth, 2011). - _Amiram Eldar_, Nov 29 2022
%t f[p_, e_] := p^e-1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; fe[p_, e_] := uphi[e]; euphi[n_] := Times @@ fe @@@ FactorInteger[n]; Array[euphi, 100]
%o (PARI) uphi(n) = {my(f=factor(n)); prod(i=1, #f~, f[i,1]^f[i,2]-1)};
%o a(n) = {my(f=factor(n)); prod(i=1, #f~, uphi(f[i,2]))}; \\ _Amiram Eldar_, Nov 29 2022
%Y Cf. A047994, A072911, A358658.
%K nonn,easy,mult
%O 1,8
%A _Amiram Eldar_, Jan 10 2019