login
A190868
Let C(n) be the expected length of the longest carry chain when two n-bit binary numbers are added; sequence gives a(n) = 2^(2n-1)*C(n).
1
0, 14, 106, 598, 3002, 14142, 64106, 283166, 1228346, 5257966, 22281738, 93689246, 391512666, 1627925006, 6741353258, 27821715326, 114493140090, 470023545198, 1925545015370, 7874137194718, 32148981709466, 131077794504654, 533774656417642, 2171261671337534, 8823512782678714, 35825200435380270
OFFSET
2,2
COMMENTS
The addition is carried out by a parallel adder as described by J. von Neumann.
LINKS
Volker Claus, Die mittlere Additionsdauer eines Paralleladdierwerks, Acta Informat. 2 (1973), 283-291.
D. E. Knuth, The average time for carry propagation, Nederl. Akad. Wetensch. Indag. Math., 81 (2) (1978), 238-242.
Nicholas Pippenger, Analysis of carry propagation in addition: an elementary approach, J. Algorithms 42 (2002), 317-333.
FORMULA
C(n) = E(n)-1, where E(n) is defined in A190866.
EXAMPLE
C(n) for n >= 2: 0, 7/16, 53/64, 299/256, 1501/1024, 7071/4096, 32053/16384, 141583/65536, ...
MAPLE
See A190866.
CROSSREFS
Cf. A190866.
Sequence in context: A285752 A076128 A206761 * A125351 A126509 A200056
KEYWORD
nonn,frac
AUTHOR
R. J. Mathar and N. J. A. Sloane, May 22 2011
STATUS
approved