login
A007137
Number of rooted maps with n edges on the projective plane.
(Formerly M4734)
5
1, 10, 98, 982, 10062, 105024, 1112757, 11934910, 129307100, 1412855500, 15548498902, 172168201088, 1916619748084, 21436209373224, 240741065193282, 2713584138389838, 30687358107371442, 348061628432108352
OFFSET
1,2
REFERENCES
E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
David M. Jackson and Terry I. Visentin, An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, Chapman & Hall/CRC, circa 2000. See page 227.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. A. Bender, E. R. Canfield and R. W. Robinson, The enumeration of maps on the torus and the projective plane, Canad. Math. Bull., 31 (1988), 257-271; see p. 270.
Guillaume Chapuy, Maciej Dołęga, A bijection for rooted maps on general surfaces, arXiv:1501.06942 [math.CO], 2016; see corollary 4.5.
Valery A. Liskovets, A reductive technique for enumerating non-isomorphic planar maps, Discrete Math. 156 (1996), no. 1-3, 197--217. MR1405018 (97f:05087). - N. J. A. Sloane, Jun 03 2012
FORMULA
From Pab Ter (pabrlos2(AT)yahoo.com), Nov 07 2005: (Start)
G.f.: ((2*R+1)/3-sqrt(R*(R+2)/3))/(2*x) where R=sqrt(1-12*x);
a(n) ~ sqrt(3/2)*12^n/(n^(5/4)*GAMMA(3/4)). (End)
From Gheorghe Coserea, Dec 26 2018: (Start)
a(n) = (2/(n+1)) * Sum_{k=0..n-1} binomial(2*n, k) * 3^k * A002426(n-k).
G.f. y=A(x) satisfies:
0 = 9*x^3*y^4 - 6*x^2*y^3 + 2*x*(21*x - 1)*y^2 + (10*x - 1)*y + x.
0 = x*(4*x + 1)*(12*x - 1)^3*y'''' + 4*(132*x^2 + 19*x - 1)*(12*x - 1)^2*y''' + 12*(1476*x^2 + 60*x - 11)*(12*x - 1)*y'' + 72*(2016*x^2 - 117*x - 4)*y' + 648*(16*x - 1)*y.
(End)
MAPLE
R:=sqrt(1-12*x): seq(coeff(convert(series(((2*R+1)/3-sqrt(R*(R+2)/3))/(2*x), x, 50), polynom), x, n), n=1..25); # Pab Ter, Nov 07 2005
MATHEMATICA
With[{r=Sqrt[1-12x]}, Rest[CoefficientList[Series[((2r+1)/3-Sqrt[r (r+2)/3])/ (2x), {x, 0, 20}], x]]](* Harvey P. Dale, Mar 02 2018 *)
PROG
(PARI)
seq(N) = {
my(x = 'x + O('x^(N+2)), r=sqrt(1-12*x));
Vec(((2*r+1)/3 - sqrt(r*(r+2)/3))/(2*x));
};
seq(18)
\\ test: y = 'x*Ser(seq(300), 'x); 0 == 9*x^3*y^4 - 6*x^2*y^3 + 2*x*(21*x - 1)*y^2 + (10*x - 1)*y + x
\\ Gheorghe Coserea, Jul 07 2018
(PARI)
b(n) = sum(k=0, n\2, n!/(k!^2 * (n - 2*k)!)); \\ A002426
a(n) = 2*sum(k=0, n-1, binomial(2*n, k) * 3^k * b(n-k))/(n+1);
vector(18, n, a(n)) \\ Gheorghe Coserea, Dec 26 2018
CROSSREFS
Cf. A006300.
A column of A267180.
Sequence in context: A190869 A254599 A217634 * A361137 A135927 A299952
KEYWORD
nonn,nice
EXTENSIONS
Reference gives 20 terms
Description corrected May 15 1997, thanks to Jean-Francois Beraud
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 07 2005
STATUS
approved