login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083043
Integers y such that 11*x^2 - 9*y^2 = 2 for some integer x.
5
1, 21, 419, 8359, 166761, 3326861, 66370459, 1324082319, 26415275921, 526981436101, 10513213446099, 209737287485879, 4184232536271481, 83474913437943741, 1665314036222603339, 33222805811014123039
OFFSET
1,2
FORMULA
G.f.: x*(1+x)/(1-20*x+x^2).
a(n) = 20*a(n-1) - a(n-2).
a(1-n) = -a(n).
11*A075839(n)^2 - 9*a(n)^2 = 2.
a(n+1) = 10*a(n) + sqrt(99*a(n)^2 + 22). - Richard Choulet, Sep 27 2007
a(n) = ((3 + sqrt(11))*(10 + 3*sqrt(11))^(n-1) + (3 - sqrt(11))*(10 - 3*sqrt(11))^(n-1))/6. - G. C. Greubel, Dec 06 2019
E.g.f.: 1 + (1/3)*exp(10*x)*(-3*cosh(3*sqrt(11)*x) + sqrt(11)*sinh(3*sqrt(11)*x)). - Stefano Spezia, Dec 06 2019 after G. C. Greubel
MAPLE
seq(coeff(series( x*(1+x)/(1-20*x+x^2), x, n+1), x, n), n = 1..20); # G. C. Greubel, Dec 06 2019
MATHEMATICA
LinearRecurrence[{20, -1}, {1, 21}, 20] (* Harvey P. Dale, Jun 02 2014 *)
PROG
(PARI) a(n)=subst(poltchebi(n+1)-poltchebi(n), x, 10)/9
(Magma) I:=[1, 21]; [n le 2 select I[n] else 20*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 06 2019
(Sage)
def A083043_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1+x)/(1-20*x+x^2) ).list()
a=A083043_list(20); a[1:] # G. C. Greubel, Dec 06 2019
(GAP) a:=[1, 21];; for n in [3..20] do a[n]:=20*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
CROSSREFS
Sequence in context: A358698 A020534 A106656 * A162807 A097833 A163145
KEYWORD
easy,nonn
AUTHOR
Michael Somos, Apr 17 2003
EXTENSIONS
Corrected by T. D. Noe, Nov 07 2006
Offset changed to 1 by G. C. Greubel, Dec 06 2019
STATUS
approved