Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Sep 08 2022 08:45:10
%S 1,21,419,8359,166761,3326861,66370459,1324082319,26415275921,
%T 526981436101,10513213446099,209737287485879,4184232536271481,
%U 83474913437943741,1665314036222603339,33222805811014123039
%N Integers y such that 11*x^2 - 9*y^2 = 2 for some integer x.
%H G. C. Greubel, <a href="/A083043/b083043.txt">Table of n, a(n) for n = 1..750</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (20,-1).
%F G.f.: x*(1+x)/(1-20*x+x^2).
%F a(n) = 20*a(n-1) - a(n-2).
%F a(1-n) = -a(n).
%F 11*A075839(n)^2 - 9*a(n)^2 = 2.
%F a(n+1) = 10*a(n) + sqrt(99*a(n)^2 + 22). - _Richard Choulet_, Sep 27 2007
%F a(n) = ((3 + sqrt(11))*(10 + 3*sqrt(11))^(n-1) + (3 - sqrt(11))*(10 - 3*sqrt(11))^(n-1))/6. - _G. C. Greubel_, Dec 06 2019
%F E.g.f.: 1 + (1/3)*exp(10*x)*(-3*cosh(3*sqrt(11)*x) + sqrt(11)*sinh(3*sqrt(11)*x)). - _Stefano Spezia_, Dec 06 2019 after _G. C. Greubel_
%p seq(coeff(series( x*(1+x)/(1-20*x+x^2), x, n+1), x, n), n = 1..20); # _G. C. Greubel_, Dec 06 2019
%t LinearRecurrence[{20,-1},{1,21},20] (* _Harvey P. Dale_, Jun 02 2014 *)
%o (PARI) a(n)=subst(poltchebi(n+1)-poltchebi(n),x,10)/9
%o (Magma) I:=[1,21]; [n le 2 select I[n] else 20*Self(n-1) - Self(n-2): n in [1..20]]; // _G. C. Greubel_, Dec 06 2019
%o (Sage)
%o def A083043_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( x*(1+x)/(1-20*x+x^2) ).list()
%o a=A083043_list(20); a[1:] # _G. C. Greubel_, Dec 06 2019
%o (GAP) a:=[1,21];; for n in [3..20] do a[n]:=20*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Dec 06 2019
%Y Cf. A075839, A075843.
%K easy,nonn
%O 1,2
%A _Michael Somos_, Apr 17 2003
%E Corrected by _T. D. Noe_, Nov 07 2006
%E Offset changed to 1 by _G. C. Greubel_, Dec 06 2019