OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/8) * eta(q^2)^11 / (eta(q)^3 * eta(q^4)^4) in powers of q.
Euler transform of period 4 sequence [3, -8, 3, -4, ...].
a(n) = b(8*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - Kronecker(2, p) * p * b(p^(e-2)). b(8*n + 5) = 4 * i * A215596(n).
EXAMPLE
G.f. = 1 + 3*x - 2*x^2 - 11*x^3 + 10*x^5 - 7*x^6 + 16*x^8 + 6*x^9 + 9*x^10 + ...
G.f. = q + 3*q^9 - 2*q^17 - 11*q^25 + 10*q^41 - 7*q^49 + 16*q^65 + 6*q^73 + 9*q^81 + ...
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^11 / (eta(x + A)^3 * eta(x^4 + A)^4), n))};
(PARI) {a(n) = my(A, p, e, u, v, s, x, y, a0, a1); if( n<0, 0, n = n*8 + 1; A = factor(n); simplify( prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, s = p * kronecker( 2, p); if( p%4==3, if( e%2, 0, (-s)^(e/2)), if( p%8==1, for( y=1, sqrtint(p\16), if( issquare( p - 16*y^2, &u), v=y; if( u%4!=1, u=-u); break)); a0 = 1; a1 = x = 2 * u * (-1)^(u\4 + v)); if( p%8==5, forstep( y=1, sqrtint(p\4), 2, if( issquare( p - 4*y^2, &v), u=y; if( u%4!=1, u=-u); if( v%4!=1, v=-v); break)); a0 = 1; a1 = x = 4 * I * u * (-1)^(v\4)); for( i=2, e, y = x*a1 - s*a0; a0=a1; a1=y); a1)))))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 16 2012
STATUS
approved