login
A309507
Number of ways the n-th triangular number T(n) = A000217(n) can be written as the difference of two positive triangular numbers.
7
0, 1, 1, 1, 3, 3, 1, 2, 5, 3, 3, 3, 3, 7, 3, 1, 5, 5, 3, 7, 7, 3, 3, 5, 5, 7, 7, 3, 7, 7, 1, 3, 7, 7, 11, 5, 3, 7, 7, 3, 7, 7, 3, 11, 11, 3, 3, 5, 8, 11, 7, 3, 7, 15, 7, 7, 7, 3, 7, 7, 3, 11, 5, 3, 15, 7, 3, 7, 15, 7, 5, 5, 3, 11, 11, 7, 15, 7, 3, 9, 9, 3, 7
OFFSET
1,5
COMMENTS
Equivalently, a(n) is the number of triples [n,k,m] with k>0 satisfying the Diophantine equation n*(n+1) + k*(k+1) - m*(m+1) = 0. Any such triple satisfies a triangle inequality, n+k > m. The n for which there is a triple [n,n,m] are listed in A053141. - Bradley Klee, Mar 01 2020; edited by N. J. A. Sloane, Mar 31 2020
LINKS
J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004:14000 [math.NT], April 2020.
M. A. Nyblom, On the representation of the integers as a difference of nonconsecutive triangular numbers, Fibonacci Quarterly 39:3 (2001), pp. 256-263.
FORMULA
a(n) = 1 <=> n in { A068194 } \ { 1 }.
a(n) is even <=> n in { A001108 } \ { 0 }.
a(n) = number of odd divisors of n*(n+1) (or, equally, of T(n)) that are greater than 1. - N. J. A. Sloane, Apr 03 2020
a(n) = A092517(n) - A063440(n) - 1. - Ridouane Oudra, Dec 08 2023
EXAMPLE
a(5) = 3: T(5) = T(6)-T(3) = T(8)-T(6) = T(15)-T(14).
a(7) = 1: T(7) = T(28)-T(27).
a(8) = 2: T(8) = T(13)-T(10) = T(36)-T(35).
a(9) = 5: T(9) = T(10)-T(4) = T(11)-T(6) = T(16)-T(13) = T(23)-T(21) = T(45)-T(44).
a(49) = 8: T(49) = T(52)-T(17) = T(61)-T(36) = T(94)-T(80) = T(127)-T(117) = T(178)-T(171) = T(247)-T(242) = T(613)-T(611) = T(1225)-T(1224).
The triples with n <= 16 are:
2, 2, 3
3, 5, 6
4, 9, 10
5, 3, 6
5, 6, 8
5, 14, 15
6, 5, 8
6, 9, 11
6, 20, 21
7, 27, 28
8, 10, 13
8, 35, 36
9, 4, 10
9, 6, 11
9, 13, 16
9, 21, 23
9, 44, 45
10, 8, 13
10, 26, 28
10, 54, 55
11, 14, 18
11, 20, 23
11, 65, 66
12, 17, 21
12, 24, 27
12, 77, 78
13, 9, 16
13, 44, 46
13, 90, 91
14, 5, 15
14, 11, 18
14, 14, 20
14, 18, 23
14, 33, 36
14, 51, 53
14, 104, 105
15, 21, 26
15, 38, 41
15, 119, 120
16, 135, 136. - N. J. A. Sloane, Mar 31 2020
MAPLE
with(numtheory): seq(tau(n*(n+1))-tau(n*(n+1)/2)-1, n=1..80); # Ridouane Oudra, Dec 08 2023
MATHEMATICA
TriTriples[TNn_] := Sort[Select[{TNn, (TNn + TNn^2 - # - #^2)/(2 #),
(TNn + TNn^2 - # + #^2)/(2 #)} & /@
Complement[Divisors[TNn (TNn + 1)], {TNn}],
And[And @@ (IntegerQ /@ #), And @@ (# > 0 & /@ #)] &]]
Length[TriTriples[#]] & /@ Range[100]
(* Bradley Klee, Mar 01 2020 *)
CROSSREFS
Cf. A000217, A001108, A046079 (the same for squares), A068194, A100821 (the same for primes for n>1), A309332.
See also A053141. The monotonic triples [n,k,m] with n <= k <= m are counted in A333529.
Sequence in context: A010264 A262816 A089680 * A306690 A160326 A213662
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 05 2019
STATUS
approved