login
A309505
Number of cyclic permutations of length n that avoid the pattern 132 (equivalently, 213).
3
1, 1, 1, 2, 4, 10, 24, 68, 182, 544, 1574, 4888, 14864, 47610, 149964, 491802, 1592198, 5318936, 17593170, 59679516, 200805614, 689988886, 2354489616, 8178944510, 28240716098
OFFSET
0,4
LINKS
Miklos Bona, Michael Cory, Cyclic Permutations Avoiding Pairs of Patterns of Length Three, arXiv:1805.05196 [math.CO], 2018.
Brice Huang, An Upper Bound on the Number of (132,213)-Avoiding Cyclic Permutations, arXiv:1808.08462 [math.CO], 2018-2019.
EXAMPLE
For n=3, there are two such permutations, 231 and 312.
The a(4) = 4 permutations are: 2341, 3421, 4123, 4312.
The a(5) = 10 permutations are: 23451, 34251, 34512, 43521, 45123, 45231, 51234, 53124, 53412, 54213.
PROG
(PARI) \\ See PARI link in A309504 for program code.
for(n=1, 16, print1(E213(n), ", ")) \\ Andrew Howroyd, Nov 20 2024
CROSSREFS
Cf. A000108 (number of permutations avoiding 132).
Sequence in context: A151516 A003104 A121186 * A309504 A148088 A028506
KEYWORD
nonn,more,changed
AUTHOR
Miklos Bona, Aug 05 2019
EXTENSIONS
a(0)=1 prepended and a(13)-a(24) from Andrew Howroyd, Nov 20 2024
STATUS
approved