login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A309504
Number of cyclic permutations of length n avoiding the pattern 123.
4
1, 1, 1, 2, 4, 10, 24, 68, 188, 586, 1722, 5492, 16924, 55582, 177278, 594460, 1944980, 6628384, 22132112, 76421498, 259359036, 905416294, 3114033930, 10971347070, 38157201530
OFFSET
0,4
LINKS
Miklos Bona, Michael Cory, Cyclic Permutations Avoiding Pairs of Patterns of Length Three, arXiv:1805.05196 [math.CO], 2018.
Andrew Howroyd, PARI Program, Nov 2024.
EXAMPLE
For n=3, there are two such permutations, 231 and 312.
The a(4) = 4 permutations are: 2413, 3142, 3421, 4312.
The a(5) = 10 permutations are: 25413, 35214, 35421, 41532, 43152, 43521, 45231, 53412, 54132, 54213.
PROG
(PARI) \\ See Links for program code.
for(n=0, 16, print1(E123(n), ", ")) \\ Andrew Howroyd, Nov 20 2024
CROSSREFS
Cf. A000108 (number of permutations avoiding 123).
Sequence in context: A003104 A121186 A309505 * A148088 A028506 A029893
KEYWORD
nonn,more
AUTHOR
Miklos Bona, Aug 05 2019
EXTENSIONS
a(0)=1 prepended and a(13)-a(24) from Andrew Howroyd, Nov 17 2024
STATUS
approved