login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302760
Number of total dominating sets in the n-antiprism graph.
4
3, 11, 54, 179, 648, 2414, 8809, 32195, 117945, 431696, 1579955, 5783294, 21168592, 77482521, 283608249, 1038086883, 3799689944, 13907938601, 50906985592, 186333942984, 682034858839, 2496440225499, 9137676323347, 33446476209566, 122423549667123
OFFSET
1,1
COMMENTS
Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, Apr 14 2018
LINKS
Eric Weisstein's World of Mathematics, Antiprism Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
FORMULA
From Andrew Howroyd, Apr 14 2018: (Start)
a(n) = 3*a(n-1) + a(n-2) + 6*a(n-3) - 3*a(n-4) + a(n-7) for n > 7.
G.f.: x*(3 + 2*x + 18*x^2 - 12*x^3 + 7*x^6)/(1 - 3*x - x^2 - 6*x^3 + 3*x^4 - x^7).
(End)
MATHEMATICA
CoefficientList[Series[(3 + 2 x + 18 x^2 - 12 x^3 + 7 x^6)/(1 - 3 x - x^2 - 6 x^3 + 3 x^4 - x^7), {x, 0, 24}], x] (* Michael De Vlieger, Apr 14 2018 *)
LinearRecurrence[{3, 1, 6, -3, 0, 0, 1}, {3, 11, 54, 179, 648, 2414, 8809}, 20] (* Vincenzo Librandi, Apr 15 2018 *)
Table[RootSum[-1 + 3 #^3 - 6 #^4 - #^5 - 3 #^6 + #^7 &, #^n &], {n, 30}] (* Eric W. Weisstein, Apr 16 2018 *)
RootSum[-1 + 3 #^3 - 6 #^4 - #^5 - 3 #^6 + #^7 &, #^Range[30] &] (* Eric W. Weisstein, Apr 16 2018 *)
PROG
(PARI) Vec((3 + 2*x + 18*x^2 - 12*x^3 + 7*x^6)/(1 - 3*x - x^2 - 6*x^3 + 3*x^4 - x^7) + O(x^25)) \\ Andrew Howroyd, Apr 14 2018
(Magma) I:=[3, 11, 54, 179, 648, 2414, 8809]; [n le 7 select I[n] else 3*Self(n-1)+Self(n-2)+6*Self(n-3)-3*Self(n-4)+Self(n-7): n in [1..30]]; // Vincenzo Librandi, Apr 15 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Apr 12 2018
EXTENSIONS
a(1)-a(2) and terms a(11) and beyond from Andrew Howroyd, Apr 14 2018
STATUS
approved