login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of total dominating sets in the n-antiprism graph.
4

%I #23 Sep 08 2022 08:46:21

%S 3,11,54,179,648,2414,8809,32195,117945,431696,1579955,5783294,

%T 21168592,77482521,283608249,1038086883,3799689944,13907938601,

%U 50906985592,186333942984,682034858839,2496440225499,9137676323347,33446476209566,122423549667123

%N Number of total dominating sets in the n-antiprism graph.

%C Sequence extrapolated to n=1 using recurrence. - _Andrew Howroyd_, Apr 14 2018

%H Andrew Howroyd, <a href="/A302760/b302760.txt">Table of n, a(n) for n = 1..200</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AntiprismGraph.html">Antiprism Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotalDominatingSet.html">Total Dominating Set</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3,1,6,-3,0,0,1).

%F From _Andrew Howroyd_, Apr 14 2018: (Start)

%F a(n) = 3*a(n-1) + a(n-2) + 6*a(n-3) - 3*a(n-4) + a(n-7) for n > 7.

%F G.f.: x*(3 + 2*x + 18*x^2 - 12*x^3 + 7*x^6)/(1 - 3*x - x^2 - 6*x^3 + 3*x^4 - x^7).

%F (End)

%t CoefficientList[Series[(3 + 2 x + 18 x^2 - 12 x^3 + 7 x^6)/(1 - 3 x - x^2 - 6 x^3 + 3 x^4 - x^7), {x, 0, 24}], x] (* _Michael De Vlieger_, Apr 14 2018 *)

%t LinearRecurrence[{3, 1, 6, -3, 0, 0, 1}, {3, 11, 54, 179, 648, 2414, 8809}, 20] (* _Vincenzo Librandi_, Apr 15 2018 *)

%t Table[RootSum[-1 + 3 #^3 - 6 #^4 - #^5 - 3 #^6 + #^7 &, #^n &], {n, 30}] (* _Eric W. Weisstein_, Apr 16 2018 *)

%t RootSum[-1 + 3 #^3 - 6 #^4 - #^5 - 3 #^6 + #^7 &, #^Range[30] &] (* _Eric W. Weisstein_, Apr 16 2018 *)

%o (PARI) Vec((3 + 2*x + 18*x^2 - 12*x^3 + 7*x^6)/(1 - 3*x - x^2 - 6*x^3 + 3*x^4 - x^7) + O(x^25)) \\ _Andrew Howroyd_, Apr 14 2018

%o (Magma) I:=[3,11,54,179,648,2414,8809]; [n le 7 select I[n] else 3*Self(n-1)+Self(n-2)+6*Self(n-3)-3*Self(n-4)+Self(n-7): n in [1..30]]; // _Vincenzo Librandi_, Apr 15 2018

%Y Cf. A302255, A302652, A302763.

%K nonn,easy

%O 1,1

%A _Eric W. Weisstein_, Apr 12 2018

%E a(1)-a(2) and terms a(11) and beyond from _Andrew Howroyd_, Apr 14 2018