OFFSET
0,2
COMMENTS
a(n)/a(n-1) tends to 3.1149075414..., which is an eigenvalue of the matrix M and a root of the characteristic polynomial x^3 - 3x^2 - x + 2.
REFERENCES
Boris A. Bondarenko, "Generalized Pascal Triangles and Pyramids, Their Fractals, Graphs and Applications", Fibonacci Association, 1993, p. 27.
LINKS
Index entries for linear recurrences with constant coefficients, signature (3, 1, -2).
FORMULA
Recurrence: a(0) = 1, a(1) = 3, a(2) = 10; a(n) = 3*a(n-1) + a(n-2) - 2*a(n-3).
Given Hosoya's triangle: 1; 1, 1; 2, 1, 2; considered as an upper triangular 3 X 3 matrix M: [2 1 2 / 1 1 0 / 1 0 0]; a(n) = center term in M^n * [1 0 0].
EXAMPLE
a(5) = 97, center term in M^5 * [1 0 0]: [205 97 66].
MATHEMATICA
CoefficientList[Series[1/(1 - 3x - x^2 + 2x^3), {x, 0, 25}], x] (* Or *)
Table[(MatrixPower[{{2, 1, 2}, {1, 1, 0}, {1, 0, 0}}, n].{1, 0, 0})[[2]], {n, 26}] (* Robert G. Wilson v, Nov 04 2004 *)
LinearRecurrence[{3, 1, -2}, {1, 3, 10}, 30] (* Harvey P. Dale, Mar 28 2012 *)
PROG
(PARI) Vec(1/(1-3*x-x^2+2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Oct 31 2004
EXTENSIONS
Edited by Ralf Stephan, Nov 02 2004
Corrected and extended by Robert G. Wilson v, Nov 04 2004
STATUS
approved