login
A100058
Expansion of 1 / (1 - 3x - x^2 + 2x^3).
3
1, 3, 10, 31, 97, 302, 941, 2931, 9130, 28439, 88585, 275934, 859509, 2677291, 8339514, 25976815, 80915377, 252043918, 785093501, 2445493667, 7617486666, 23727766663, 73909799321, 230222191294, 717120839877, 2233765112283
OFFSET
0,2
COMMENTS
a(n)/a(n-1) tends to 3.1149075414..., which is an eigenvalue of the matrix M and a root of the characteristic polynomial x^3 - 3x^2 - x + 2.
REFERENCES
Boris A. Bondarenko, "Generalized Pascal Triangles and Pyramids, Their Fractals, Graphs and Applications", Fibonacci Association, 1993, p. 27.
FORMULA
Recurrence: a(0) = 1, a(1) = 3, a(2) = 10; a(n) = 3*a(n-1) + a(n-2) - 2*a(n-3).
Given Hosoya's triangle: 1; 1, 1; 2, 1, 2; considered as an upper triangular 3 X 3 matrix M: [2 1 2 / 1 1 0 / 1 0 0]; a(n) = center term in M^n * [1 0 0].
EXAMPLE
a(5) = 97, center term in M^5 * [1 0 0]: [205 97 66].
MATHEMATICA
CoefficientList[Series[1/(1 - 3x - x^2 + 2x^3), {x, 0, 25}], x] (* Or *)
Table[(MatrixPower[{{2, 1, 2}, {1, 1, 0}, {1, 0, 0}}, n].{1, 0, 0})[[2]], {n, 26}] (* Robert G. Wilson v, Nov 04 2004 *)
LinearRecurrence[{3, 1, -2}, {1, 3, 10}, 30] (* Harvey P. Dale, Mar 28 2012 *)
PROG
(PARI) Vec(1/(1-3*x-x^2+2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
Partial sums of A052911. Cf. A019481, A052550, A052939, A100059, A058071.
Sequence in context: A055217 A097472 A068094 * A002160 A214839 A114487
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Oct 31 2004
EXTENSIONS
Edited by Ralf Stephan, Nov 02 2004
Corrected and extended by Robert G. Wilson v, Nov 04 2004
STATUS
approved