login
A110524
Expansion of (1 + x)/(1 + 2*x + 2*x^3).
3
1, -1, 2, -6, 14, -32, 76, -180, 424, -1000, 2360, -5568, 13136, -30992, 73120, -172512, 407008, -960256, 2265536, -5345088, 12610688, -29752448, 70195072, -165611520, 390727936, -921846016, 2174915072, -5131286016, 12106264064, -28562358272, 67387288576, -158987105280
OFFSET
0,3
COMMENTS
Diagonal sums of number triangle A110522.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..(n-k)} (-1)^(n-k-j)*C(n-k, j) *(-3)^(j-k)*C(k, j-k).
a(n) = (-1)^n * A077999(n). - G. C. Greubel, Jun 27 2019
MATHEMATICA
CoefficientList[Series[(1+x)/(1+2*x+2*x^3), {x, 0, 40}], x] (* G. C. Greubel, Aug 30 2017 *)
LinearRecurrence[{-2, 0, -2}, {1, -1, 2}, 40] (* G. C. Greubel, Jun 27 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1+x)/(1+2*x+2*x^3)) \\ G. C. Greubel, Aug 30 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)/( 1+2*x+2*x^3) )); // G. C. Greubel, Jun 27 2019
(Sage) ((1+x)/(1+2*x+2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
(GAP) a:=[1, -1, 2];; for n in [4..40] do a[n]:=-2*(a[n-1]+a[n-3]); od; a; # G. C. Greubel, Jun 27 2019
CROSSREFS
Cf. A077999.
Sequence in context: A294780 A051485 A077999 * A083404 A232497 A089351
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jul 24 2005
STATUS
approved