login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078003
Expansion of (1-x)/(1-2*x+2*x^2-2*x^3).
3
1, 1, 0, 0, 2, 4, 4, 4, 8, 16, 24, 32, 48, 80, 128, 192, 288, 448, 704, 1088, 1664, 2560, 3968, 6144, 9472, 14592, 22528, 34816, 53760, 82944, 128000, 197632, 305152, 471040, 727040, 1122304, 1732608, 2674688, 4128768, 6373376, 9838592, 15187968, 23445504, 36192256
OFFSET
0,5
FORMULA
a(n) = A077943(n) - A077943(n-1). - R. J. Mathar, Aug 04 2008
MATHEMATICA
LinearRecurrence[{2, -2, 2}, {1, 1, 0}, 50] (* or *) CoefficientList[
Series[(1-x)/(1-2*x+2*x^2-2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Jun 27 2019 *)
PROG
(PARI) Vec((1-x)/(1-2*x+2*x^2-2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/( 1-2*x+2*x^2-2*x^3) )); // G. C. Greubel, Jun 27 2019
(Sage) ((1-x)/(1-2*x+2*x^2-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
(GAP) a:=[1, 1, 0];; for n in [4..50] do a[n]:=2*(a[n-1]-a[n-2]+a[n-3]); od; a; # G. C. Greubel, Jun 27 2019
CROSSREFS
Cf. A077943.
Sequence in context: A309690 A173531 A122788 * A081524 A299768 A021413
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved