The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309690 Sum of the even parts appearing among the second largest parts of the partitions of n into 3 parts. 12
 0, 0, 0, 0, 0, 2, 4, 4, 4, 8, 12, 16, 20, 26, 32, 38, 44, 58, 72, 80, 88, 106, 124, 142, 160, 182, 204, 226, 248, 284, 320, 346, 372, 414, 456, 498, 540, 588, 636, 684, 732, 800, 868, 922, 976, 1052, 1128, 1204, 1280, 1364, 1448, 1532, 1616, 1726, 1836, 1928 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for sequences related to partitions Index entries for linear recurrences with constant coefficients, signature (2,-3,4,-3,2,1,-4,6,-8,6,-4,1,2,-3,4,-3,2,-1). FORMULA a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} i * ((i-1) mod 2). From Colin Barker, Aug 23 2019: (Start) G.f.: 2*x^5*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2). a(n) = 2*a(n-1) - 3*a(n-2) + 4*a(n-3) - 3*a(n-4) + 2*a(n-5) + a(n-6) - 4*a(n-7) + 6*a(n-8) - 8*a(n-9) + 6*a(n-10) - 4*a(n-11) + a(n-12) + 2*a(n-13) - 3*a(n-14) + 4*a(n-15) - 3*a(n-16) + 2*a(n-17) - a(n-18) for n>17. (End) EXAMPLE Figure 1: The partitions of n into 3 parts for n = 3, 4, ... 1+1+8 1+1+7 1+2+7 1+2+6 1+3+6 1+1+6 1+3+5 1+4+5 1+1+5 1+2+5 1+4+4 2+2+6 1+1+4 1+2+4 1+3+4 2+2+5 2+3+5 1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4 1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ... ----------------------------------------------------------------------- n | 3 4 5 6 7 8 9 10 ... ----------------------------------------------------------------------- a(n) | 0 0 2 4 4 4 8 12 ... ----------------------------------------------------------------------- MATHEMATICA Table[Sum[Sum[i * Mod[i - 1, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}] LinearRecurrence[{2, -3, 4, -3, 2, 1, -4, 6, -8, 6, -4, 1, 2, -3, 4, -3, 2, -1}, {0, 0, 0, 0, 0, 2, 4, 4, 4, 8, 12, 16, 20, 26, 32, 38, 44, 58}, 80] PROG (PARI) concat([0, 0, 0, 0, 0], Vec(2*x^5*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2) + O(x^60))) \\ Colin Barker, Aug 23 2019 CROSSREFS Cf. A026923, A026927, A309683, A309684, A309685, A309686, A309687, A309688, A309689, A309692, A309694. Sequence in context: A342272 A182635 A188346 * A173531 A122788 A078003 Adjacent sequences: A309687 A309688 A309689 * A309691 A309692 A309693 KEYWORD nonn,easy AUTHOR Wesley Ivan Hurt, Aug 12 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 11:50 EDT 2024. Contains 373445 sequences. (Running on oeis4.)