login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309684 Sum of the odd parts appearing among the smallest parts of the partitions of n into 3 parts. 12
0, 0, 0, 1, 1, 2, 2, 3, 3, 7, 7, 11, 11, 15, 15, 24, 24, 33, 33, 42, 42, 58, 58, 74, 74, 90, 90, 115, 115, 140, 140, 165, 165, 201, 201, 237, 237, 273, 273, 322, 322, 371, 371, 420, 420, 484, 484, 548, 548, 612, 612, 693, 693, 774, 774, 855, 855, 955, 955 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Jinyuan Wang, Table of n, a(n) for n = 0..5000

Index entries for sequences related to partitions

Index entries for linear recurrences with constant coefficients, signature (1,1,-1,0,0,2,-2,-2,2,0,0,-1,1,1,-1).

FORMULA

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} j * (j mod 2).

From Colin Barker, Aug 22 2019: (Start)

G.f.: x^3*(1 + x^2)*(1 - x^2 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x + x^2)^2).

a(n) = a(n-1) + a(n-2) - a(n-3) + 2*a(n-6) - 2*a(n-7) - 2*a(n-8) + 2*a(n-9) - a(n-12) + a(n-13) + a(n-14) - a(n-15) for n>14.

(End)

EXAMPLE

Figure 1: The partitions of n into 3 parts for n = 3, 4, ...

                                                          1+1+8

                                                   1+1+7  1+2+7

                                                   1+2+6  1+3+6

                                            1+1+6  1+3+5  1+4+5

                                     1+1+5  1+2+5  1+4+4  2+2+6

                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5

                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4

         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...

-----------------------------------------------------------------------

  n  |     3      4      5      6      7      8      9     10      ...

-----------------------------------------------------------------------

a(n) |     1      1      2      2      3      3      7      7      ...

-----------------------------------------------------------------------

MATHEMATICA

Table[Sum[Sum[j*Mod[j, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]

LinearRecurrence[{1, 1, -1, 0, 0, 2, -2, -2, 2, 0, 0, -1, 1, 1, -1}, {0, 0, 0, 1, 1, 2, 2, 3, 3, 7, 7, 11, 11, 15, 15}, 20] (* Wesley Ivan Hurt, Aug 29 2019 *)

PROG

(PARI) a(n) = sum(j = 1, floor(n/3), sum(i = j, floor((n-j)/2), j * (j%2))); \\ Jinyuan Wang, Aug 29 2019

CROSSREFS

Cf. A026923, A026927, A309683, A309685, A309686, A309687, A309688, A309689, A309690, A309692, A309694.

Sequence in context: A295510 A324520 A307737 * A330950 A032060 A241385

Adjacent sequences:  A309681 A309682 A309683 * A309685 A309686 A309687

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Aug 12 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 10:39 EST 2020. Contains 338876 sequences. (Running on oeis4.)