login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309683
Number of odd parts appearing among the smallest parts of the partitions of n into 3 parts.
11
0, 0, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 12, 12, 15, 15, 18, 18, 22, 22, 26, 26, 30, 30, 35, 35, 40, 40, 45, 45, 51, 51, 57, 57, 63, 63, 70, 70, 77, 77, 84, 84, 92, 92, 100, 100, 108, 108, 117, 117, 126, 126, 135, 135, 145, 145, 155, 155, 165, 165, 176
OFFSET
0,6
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (j mod 2).
From Colin Barker, Aug 22 2019: (Start)
G.f.: x^3 / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) for n>8.
(End)
EXAMPLE
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 1 1 2 2 3 3 5 5 ...
-----------------------------------------------------------------------
MATHEMATICA
Table[Sum[Sum[Mod[j, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 0, 1, 1, 2, 2, 3, 3}, 50] (* Wesley Ivan Hurt, Aug 28 2019 *)
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 12 2019
STATUS
approved