login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of odd parts appearing among the smallest parts of the partitions of n into 3 parts.
11

%I #19 Sep 02 2019 07:37:42

%S 0,0,0,1,1,2,2,3,3,5,5,7,7,9,9,12,12,15,15,18,18,22,22,26,26,30,30,35,

%T 35,40,40,45,45,51,51,57,57,63,63,70,70,77,77,84,84,92,92,100,100,108,

%U 108,117,117,126,126,135,135,145,145,155,155,165,165,176

%N Number of odd parts appearing among the smallest parts of the partitions of n into 3 parts.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,0,0,1,-1,-1,1).

%F a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (j mod 2).

%F From _Colin Barker_, Aug 22 2019: (Start)

%F G.f.: x^3 / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).

%F a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) for n>8.

%F (End)

%e Figure 1: The partitions of n into 3 parts for n = 3, 4, ...

%e 1+1+8

%e 1+1+7 1+2+7

%e 1+2+6 1+3+6

%e 1+1+6 1+3+5 1+4+5

%e 1+1+5 1+2+5 1+4+4 2+2+6

%e 1+1+4 1+2+4 1+3+4 2+2+5 2+3+5

%e 1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4

%e 1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...

%e -----------------------------------------------------------------------

%e n | 3 4 5 6 7 8 9 10 ...

%e -----------------------------------------------------------------------

%e a(n) | 1 1 2 2 3 3 5 5 ...

%e -----------------------------------------------------------------------

%t Table[Sum[Sum[Mod[j, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]

%t LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 0, 1, 1, 2, 2, 3, 3}, 50] (* _Wesley Ivan Hurt_, Aug 28 2019 *)

%Y Cf. A026923, A026927, A309684, A309685, A309686, A309687, A309688, A309689, A309690, A309692, A309694.

%K nonn,easy

%O 0,6

%A _Wesley Ivan Hurt_, Aug 12 2019