login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309685
Number of even parts appearing among the smallest parts of the partitions of n into 3 parts.
11
0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 12, 12, 15, 15, 18, 18, 22, 22, 26, 26, 30, 30, 35, 35, 40, 40, 45, 45, 51, 51, 57, 57, 63, 63, 70, 70, 77, 77, 84, 84, 92, 92, 100, 100, 108, 108, 117, 117, 126, 126, 135, 135, 145, 145, 155, 155, 165
OFFSET
0,9
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} ((j-1) mod 2).
From Colin Barker, Aug 23 2019: (Start)
G.f.: x^6 / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) for n>8.
(End)
a(n) = A001840(floor((n-4)/2)) for n>=2. - Joerg Arndt, Aug 23 2019
EXAMPLE
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 0 0 0 1 1 2 2 3 ...
-----------------------------------------------------------------------
MATHEMATICA
LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 0, 0, 0, 0, 1, 1, 2}, 80] (* Wesley Ivan Hurt, Aug 30 2019 *)
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 12 2019
STATUS
approved