login
A026927
Number of partitions of n into an even number of parts, the greatest being 3; also, a(n+5) = number of partitions of n+2 into an odd number of parts, each <= 3.
12
0, 0, 0, 1, 1, 2, 1, 3, 3, 5, 4, 7, 6, 9, 8, 12, 11, 15, 13, 18, 17, 22, 20, 26, 24, 30, 28, 35, 33, 40, 37, 45, 43, 51, 48, 57, 54, 63, 60, 70, 67, 77, 73, 84, 81, 92, 88, 100, 96, 108, 104, 117
OFFSET
1,6
FORMULA
a(n) + A026923(n) = A069905(n). - R. J. Mathar, Aug 22 2019
Conjectures from Colin Barker, Sep 01 2019: (Start)
G.f.: x^4*(1 + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) + a(n-6) - a(n-7) - a(n-10) + a(n-11) for n>11.
(End)
EXAMPLE
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 0 1 1 2 1 3 3 5 ...
-----------------------------------------------------------------------
KEYWORD
nonn
STATUS
approved