login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288005
Number of symmetrical fountains of n coins.
2
1, 1, 1, 2, 1, 3, 3, 5, 4, 9, 8, 15, 14, 26, 24, 46, 42, 79, 73, 137, 128, 239, 221, 414, 385, 719, 668, 1249, 1161, 2167, 2016, 3762, 3499, 6531, 6075, 11336, 10546, 19676, 18306, 34153, 31775, 59279, 55155, 102890, 95733, 178587, 166165, 309968, 288412
OFFSET
0,4
LINKS
EXAMPLE
a(7) = 5:
.. O O O ....... O O ....... O ... O ......... O ........................
. O O O O ... O O O O O ... O O O O O ... O O O O O O ... O O O O O O O .
MAPLE
b:= proc(n, i, p) option remember; `if`(n<0, 0, `if`(n=0,
`if`(p<0 and i=1, 1, 0), `if`(n=i or n=i+p, 1, 0)+
`if`(i<1 and p=1, 0, b(n-2*i, i, -p))+b(n-2*(i+p), i+p, -p)))
end:
a:= n-> `if`(n=0, 1, b(n, 0, 1)):
seq(a(n), n=0..60); # Alois P. Heinz, Sep 02 2017
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n < 0, 0, If[n == 0, If[p < 0 && i == 1, 1, 0], If[n == i || n == i + p, 1, 0] + If[i < 1 && p == 1, 0, b[n - 2i, i, -p]] + b[n - 2(i + p), i + p, -p]]];
a[n_] := If[n == 0, 1, b[n, 0, 1]];
a /@ Range[0, 60] (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A343379 A026927 A240863 * A237832 A074500 A107237
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 01 2017
EXTENSIONS
a(33)-a(48) from Alois P. Heinz, Sep 02 2017
STATUS
approved