login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288004
The Chain Hereditary Form. For n > 0, let j(n) = A289342(n) and construct two intervals around j(n) of length r(n) = A288003(n): old = flip([j(n)-[0:r(n)-1]]) to the left of j(n) and new = [j(n)+[1:r(n)]] to the right of j(n). Let a(0) = 1; and for n > 0 and for each point in the intervals set a(new[1..r(n)]) = a(old[1..r(n)]) if l-fusc A288002(n) > 0 and a(new[1..r(n)]) = ~a(old[1..r(n)]) if l-fusc A288002(n) == 0.
1
1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1
OFFSET
0
COMMENTS
Note that (A288002(n) == 0) iff (A209229(n) == 1).
Notation:
Let ~ denote negation of a word over an alphabet A = {-,+}.
Let <worda,wordb> denote concatenation of two words.
Let # denote conversion of an integer sequence defined over the alphabet A into the binary domain B = {0,1}.
Let the operation |(word,condition) negate the first letter of the word if the condition is true.
Let the operation (word,condition)| negate the last letter of the word if the condition is true.
Construction:
For n > 0, define the sequence chf(n) of Christoffel words over an alphabet {'-','+'} by recursion with chf(1) = '-' and chf(2*n+0) = ~chf(n), chf(2*n+1) = ~<chf(n),chf(n+1)>.
The chf(n) word has length z(n) = A002487(n) and splits uniquely into two parent Christoffel words: the left Christoffel word lef(n) of length l(n) == A288002(n) and the right Christoffel word rig(n) of length r(n) == A288003(n). Note that a one-letter word 'a' splits by definition into '' at the left and ~'a' at the right side.
The chf(n) word also splits uniquely into parent palindromes:
The word ala(n) = chf(n)[1..r(n)] == rig(n)| is the left palindromic parent of chf(n) with length r(n).
The word ara(n) = chf(n)[r(n)+1..z(n)] == |lef(n) is the right palindromic parent of chf(n) with length l(n).
Consider the odd bisection CHF(n) of the chf(n) sequence. The CHF(n) word has length Z(n) = A007306(n) and splits uniquely into two parent Christoffel words: the left LEF(n) of length L(n) == A002487(n-1) and the right RIG(n) of length R(n) == A002487(n). The word RIG(n) == ~chf(n).
The CHF(n) word splits uniquely into parent palindromes as well:
The word ALA(n) = CHF(n)[1..R(n)] == RIG(n)| is the left palindromic parent of CHF(n) with length R(n).
The word ARA(n) = CHF(n)[R(n)+1..Z(n)] == |LEF(n) is the right palindromic parent of CHF(n) with length L(n).
For n > 0, define the lap(n) word to be the chf(n) word taken to the power A001511(n), so that the factor-word chf(n) repeats in lap(n) A001511(n) times.
The CHF(n+1) word shifted rightwards relative to the CHF(n) word by A288002(n) letters of lef(n) determines the longest overlap LAP(n) of the words CHF(n) and CHF(n+1). Note that the first overlapping letters differ iff n == 2^k: CHF(n)[1] == |(CHF(n+1)[1],A288002(n)==0).
For n > 0, the sequence LAP(n) == ~lap(n) is obtained by cutting off the word ~lef(n) at the left side of CHF(n) and negating the first letter of the new word iff lef(n) is empty: LAP(n) = |(CHF(n)[l+1:Z],A288002(n)==0).
The words lap(n) and LAP(n) have both length o(n) = A007306(n) - A288002(n) = A287896(n).
For n > 0, the word cut(n) is defined by cut(n) = |(~lef(n),L(n)==1). For n = 0, cut(n) = ''.
For n > 0, the word add(n) is defined by add(n) = ~rig(n). For n = 0, add(0) = '+'.
For n > 0, CHF(n+1) = <LAP(n),add(n)>.
For n = 0, CHF(n+1) = <|(add(n),n==0)> = LAP(n).
Let i(1) = 1 and for n > 1, let i(n) == A289341(n) be the partial sum of l(1..n-1) + 1.
Let j(1) = 1 and for n > 1, let j(n) == A289342(n) be the partial sum of r(1..n-1) + 1.
For (n > 0 and 1 <= k <= r(n)), construct C_H_F(j(n)+k) = add(n)[k].
For n >= 0, a(n) = #C_H_F(n).
See the example below.
REFERENCES
E. B. Christoffel. Observatio arithmetica. Math. ann., 6:145-152, 1875.
FORMULA
For n > 0:
{
Let the current block of the sequence be denoted as
H = a(i(n) .. j(n)).
H = a(i(n) .. i(n)+Z(n)-1).
Then:
#CHF(n) = |( a(i(n) .. i(n)+Z(n)-1 ), ispalindrom(H)) ;
#LEF(n) = |( a(i(n) .. i(n)+L(n)-1 ), ispalindrom(H)) ;
#RIG(n) = ( a(i(n)+L(n) .. i(n)+Z(n)-1 ) ;
#chf(n) = (-a(i(n)+L(n) .. i(n)+Z(n)-1 ) ;
#lef(n) = |(-a(i(n)+L(n)+r(n).. i+Z(n)-1 ), 1) ;
#rig(n) = (-a(i(n)+L(n) .. i(n)+L(n)+r(n)-1), 1)|;
#lap(n) = |(-a(i(n)+l(n) .. i(n)+Z(n)-1 ),n > 1 & l(n)==0 ) ;
#LAP(n) = |( a(i(n)+l(n) .. i(n)+Z(n)-1 ),n > 1 & l(n)==0 ) ;
#cut(n) = |( a(i(n)+L(n) .. i(n)+L(n)+l(n)-1), ispalindrom(H)) ;
#add(n) = |( a(i(n)+L(n)+l(n).. i+Z(n)-1 ), l(n)==0 ) ;
#CHF(n+1) = <LAP(n),add(n)>.
Here:
Z(n) = A007306(n ) = length(CHF(n));
L(n) = A002487(n-1) = length(LEF(n));
R(n) = A002487(n ) = length(RIG(n));
z(n) = A002487(n ) = length(chf(n));
l(n) = A288002(n ) = length(lef(n)) = length(cut(n));
r(n) = A288003(n ) = length(rig(n)) = length(add(n));
o(n) = A287896(n ) = length(lap(n)) = length(LAP(n));
i(n) = A289341(n);
j(n) = A289342(n).
}
EXAMPLE
Example I.
n chf(n) lef(n) LEF(n) LAP(n) cut(n) add(n) CHF(n)
-1 '-' '' '' '+' '' '-' '-'
------------------------------------------------------
0 '+' '' '' '-' '' '+' '+'
------------------------------------------------------
1 '-' '' '' '+' '' '-' '-'
2 '+' '' '+' '--' '' '+' '+-'
3 '+-' '-' '-' '-+' '+' '+' '--+'
4 '- ' '' '-+' '+++' '' '-' '-++'
5 '--+' '+' '+' '++-' '-' '+-' '+++-'
6 '-+' '+' '++-' '+-+-' '+' '-' .'++-+-'
7 '-++' '+-' '+-' '+--' '+-' '-' . '+-+--'
8 '+' '' '+--' '----' '' '+' . '+---'
9 '+++-' '-' '-' '---+' '+' '--+' . '----+'
10 '++-' '-' '---+' '--+--+' '-' '-+' . '---+--+'
11 '++-+-' '--+' '--+' '--+-+' '--+' '-+' . '--+--+-+'
12 '+-' '-' '--+-+' '-+-+-+' '-' '+' . '--+-+-+'
13 '+-+--' '-+' '-+' '-+-++' '-+' '-++' . '-+-+-++'
14 '+--' '-+' '-+-++' '-++-++' '-+' '+' . '-+-++-++'
15 '+---' '-++' '-++' '-+++' '-++' '+' . '-++-+++'
16 '-' '' '-+++' '+++++' '' '-' . '-++++'
17 '----+' '+' '+' '++++-' '-' '+++-' . '+++++-'
The Chain Hereditary Form of n = 17 is C_H_F(17)='+-++-+---+--+-+-++-++++-'
a(0..17) = #C_H_F(17)='+-++-+---+--+-+-++-++++-'
= [1,0,1,1,0,1,0,0,0,1,0,0,1,0,1,0,1,1,0,1,1,1,1,0].
Example II.
0123456789012345678901234567890123456789012345
'+-++-+---+--+-+-++-++++-+++-++-++-+-++-+-+-+--'
CHF(22)='++-++-+-++-+-'
ALA(22)='++-++'
ARA(22)='-+-++-+-'
LEF(22)='++-++-+-'
RIG(22)='++-+-'
chf(22)='--+-+'
ala(22)='--'
ara(22)='+-+'
lef(22)='--+'
rig(22)='-+'
cut(22)='++-'
LAP(22)='++-+-++-+-'
add(22)='+-'
CHF(23)='++-+-++-+-+-'
ALA(23)='++-+-++'
ARA(23)='-+-+-'
LEF(23)='++-+-'
RIG(23)='++-+-+-'
chf(23)='--+-+-+'
ala(23)='--'
ara(23)='+-+-+'
lef(23)='--+-+'
rig(23)='-+'
cut(23)='++-+-'
LAP(23)='++-+-+-'
add(23)='+-'
CHF(24)='++-+-+-+-'
ALA(24)='++'
ARA(24)='-+-+-+-'
LEF(24)='++-+-+-'
RIG(24)='+-'.
Example III.
n C_H_F(n)
0 '+'
1 '+-'
2 '+-+'
3 '+-++'
4 '+-++-'
5 '+-++-+'
6 '+-++-+--'
7 '+-++-+---'
8 '+-++-+---+'
9 '+-++-+---+-'.
CROSSREFS
Sequence in context: A117944 A117945 A128937 * A102511 A266669 A129360
KEYWORD
nonn
AUTHOR
I. V. Serov, Jun 30 2017
STATUS
approved