login
A129360
12
1, 0, 1, -1, 0, 1, 0, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,1
COMMENTS
Row sums = A209229 (1, 1, 0, 1, 0, 0, 0, 1, ...).
A129353 = the inverse Möbius transform of A115361.
LINKS
FORMULA
Moebius transform of A115361.
T(n,k) = A087003(n/k) for k | n, T(n,k) = 0 otherwise. - Andrew Howroyd, Aug 03 2018
EXAMPLE
First few rows of the triangle are:
1;
0, 1;
-1, 0, 1;
0, 0, 0, 1;
-1, 0, 0, 0, 1;
0, -1, 0, 0, 0, 1;
-1, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 1;
...
PROG
(PARI) tabl(nn) = {Tm = matrix(nn, nn, n, k, if (! (n % k), moebius(n/k), 0)); Tr = matrix(nn, nn, n, k, n--; k--; if ((n==k), 1, if (n==2*k+1, -1, 0))); Ti = Tr^(-1); Tp = Tm*Ti; for (n=1, nn, for (k=1, n, print1(Tp[n, k], ", "); ); print(); ); } \\ Michel Marcus, Mar 28 2015
(PARI) T(n, k)={ if(n%k, 0, sumdiv(n/k, d, my(e=valuation(d, 2)); if(d==1<<e, moebius(n/(k*d)), 0))) } \\ Andrew Howroyd, Aug 03 2018
CROSSREFS
Column 1 is A087003 (Moebius transform of A209229).
Row sums are A209229.
Sequence in context: A288004 A102511 A266669 * A129372 A169591 A374646
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Apr 10 2007
EXTENSIONS
More terms from Michel Marcus, Mar 28 2015
Offset changed by Andrew Howroyd, Aug 03 2018
STATUS
approved