login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103994
5
1, 1, 1, -1, 0, 1, 1, 1, 0, 1, -1, 0, 0, 0, 1, -1, -1, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, -1, 0, 1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,1
COMMENTS
Row sums = A104117: (1, 2, 0, 3, 0, 0, 0, 4, 0, 0, ...).
LINKS
FORMULA
A129360 * A115361 as infinite lower triangular matrices.
T(n,k) = A209635(n/k) for k | n, T(n,k) = 0 otherwise. - Andrew Howroyd, Aug 03 2018
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
-1, 0, 1;
1, 1, 0, 1;
-1, 0, 0, 0, 1;
-1, -1, 1, 0, 0, 1;
-1, 0, 0, 0, 0, 0, 1;
1, 1, 0, 1, 0, 0, 0, 1;
...
MATHEMATICA
T[n_, k_] := If[Divisible[n, k], MoebiusMu[(n/k)/2^IntegerExponent[n/k, 2]], 0];
Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 14 2019 *)
PROG
(PARI) tabl(nn) = {Tm = matrix(nn, nn, n, k, if (! (n % k), moebius(n/k), 0)); Tr = matrix(nn, nn, n, k, n--; k--; if ((n==k), 1, if (n==2*k+1, -1, 0))); Ti = Tr^(-1); Tp = Tm*Ti*Ti; for (n=1, nn, for (k=1, n, print1(Tp[n, k], ", "); ); print(); ); }
(PARI) T(n, k)={ if(n%k, 0, sumdiv(n/k, d, my(e=valuation(d, 2)); if(d==1<<e, moebius(n/(k*d))*(1 + e), 0))) } \\ Andrew Howroyd, Aug 03 2018
CROSSREFS
Column 1 is A209635 (Moebius transform of A104117).
Row sums are A104117.
Sequence in context: A360116 A255339 A174854 * A051731 A304569 A135839
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Apr 15 2007
EXTENSIONS
More terms from Michel Marcus, Mar 28 2015
STATUS
approved