login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129353
3
1, 2, 1, 1, 0, 1, 3, 2, 0, 1, 1, 0, 0, 0, 1, 2, 1, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 4, 3, 0, 2, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 2, 3, 1, 0, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,2
COMMENTS
The inverse Moebius transform of the first column of A115361 which is A209229 gives the first column of this sequence.
LINKS
FORMULA
T(n,k) = A001511(n/k) for k | n, T(n,k) = 0 otherwise. - Andrew Howroyd, Aug 04 2018
EXAMPLE
First few rows of the triangle are:
1;
2, 1;
1, 0, 1;
3, 2, 0, 1;
1, 0, 0, 0, 1;
2, 1, 2, 0, 0, 1;
1, 0, 0, 0, 0, 0, 1;
4, 3, 0, 2, 0, 0, 0, 1;
...
MAPLE
A129353 := proc(n, k)
add( A051731(n, j)*A115361(j-1, k-1), j=k..n) ;
end proc: # R. J. Mathar, Jul 14 2012
MATHEMATICA
T[n_, k_] := If[Mod[n, k] != 0, 0, 1 + IntegerExponent[n/k, 2]];
Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 08 2020, from PARI *)
PROG
(PARI) T(n, k)={if(n%k, 0, 1 + valuation(n/k, 2))} \\ Andrew Howroyd, Aug 04 2018
CROSSREFS
Column 1 is A001511.
Row sums are A129628 (inverse Moebius transform of A001511).
Sequence in context: A131257 A105806 A129501 * A174295 A158511 A092921
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Apr 10 2007
STATUS
approved