login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129358 G.f.: A(x) = Product_{n>=1} [ (1-x)^5*(1 + 5x + 15x^2 +...+ n(n+1)(n+2)(n+3)/4!*x^(n-1)) ]. 3
1, -5, -5, 70, -180, 770, -4760, 20840, -68085, 147890, -795, -1679855, 8378195, -25065005, 56439545, -145200415, 612604910, -2764023765, 10020060660, -28723695265, 67618167310, -128945409045, 137921330680, 375948665405, -3167538981120, 12823443150644, -38103903888575 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(k) != 0 (mod 5) at k = 25*A001318(n) for n>=0, where A001318 are the generalized pentagonal numbers: m(3m-1)/2, m=0,+-1,+-2,...; a(k) == 1 (mod 5) at k = 25*A036498(n) (n>=0); a(k) == -1 (mod 5) at k = 25*A036499(n) (n>=0).

LINKS

Table of n, a(n) for n=0..26.

FORMULA

G.f.: A(x) = Product_{n>=1} [ 1 - (n+1)(n+2)(n+3)(n+4)/4!*x^n + 4n(n+2)(n+3)(n+4)/4!*x^(n+1) - 6n(n+1)(n+3)(n+4)/4!*x^(n+2) + 4n(n+1)(n+2)(n+4)/4!*x^(n+3) - n(n+1)(n+2)(n+3)/4!*x^(n+4) ].

EXAMPLE

A(x) = (1-5x+10x^2-10x^3+5x^4-x^5)*(1-15x^2+40x^3-45x^4+24x^5-5x^6)*(1-35x^3+105x^4-126x^5+70x^6-15x^7)*(1-70x^4+224x^5-280x^6+160x^7-35x^8)*...

Terms are divisible by 5 except at positions given by 25*A001318(n):

a(n) == 1 (mod 5) at n = [0, 125, 175, 550, 650,...,25*A036498(k),...];

a(n) == -1 (mod 5) at n = [25, 50, 300, 375, 875,...,25*A036499(k),...].

PROG

(PARI) {a(n)=if(n==0, 1, polcoeff(prod(k=1, n, (1-x)^5*sum(j=1, k, binomial(j+3, 4)*x^(j-1)) +x*O(x^n)), n))}

CROSSREFS

Cf. A129355, A129356, A129357; A001318, A036498, A036499.

Sequence in context: A151467 A241209 A171726 * A318420 A151492 A081050

Adjacent sequences:  A129355 A129356 A129357 * A129359 A129360 A129361

KEYWORD

sign

AUTHOR

Paul D. Hanna, Apr 11 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 8 09:16 EDT 2021. Contains 343666 sequences. (Running on oeis4.)