login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288007
Expansion of 1/Product_{j>=1} Product_{i>=1} (1 + x^(i*j)).
9
1, -1, -1, -1, 1, 1, 0, 2, 2, -1, -2, 0, -1, -1, -4, -1, 2, 0, -1, 2, 2, 5, -1, 4, 8, -4, -5, 0, -1, -1, -6, -1, 3, -7, -9, -5, 1, 3, -3, 3, 17, 0, -6, 8, 12, 8, 0, 8, 17, -11, -9, -10, 0, -2, -20, 5, 14, -18, -25, -10, 1, -7, -21, 2, 29, -12, -17, 6, 17, 32, -4
OFFSET
0,8
LINKS
FORMULA
Convolution inverse of A107742.
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A109386(k)*a(n-k) for n > 0.
G.f.: exp(-Sum_{k>=1} sigma(k)*x^k/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Aug 26 2018
MAPLE
with(numtheory): seq(coeff(series(exp(-add(sigma(k)*x^k/(k*(1-x^(2*k))), k=1..n)), x, n+1), x, n), n = 0 .. 70); # Muniru A Asiru, Jan 30 2019
MATHEMATICA
A109386[n_] := DivisorSum[n, #*DivisorSum[#, Mod[#, 2] &] &]; a[0] = 1; a[n_] := a[n] = -(1/n) Sum[A109386[k] a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 04 2017 *)
CoefficientList[Series[1/Product[Product[1+x^(j*k), {j, 1, 100}], {k, 1, 100}], {x, 0, 80}], x] (* G. C. Greubel, Oct 29 2018 *)
PROG
(PARI) m=80; x='x+O('x^m); Vec(1/(prod(k=1, 2*m, prod(j=1, 2*m, 1+x^(j*k) )))) \\ G. C. Greubel, Oct 29 2018
(Magma) m:=80; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(&*[(&*[1 + x^(j*k): j in [1..2*m]]): k in [1..2*m]]))); // G. C. Greubel, Oct 29 2018
CROSSREFS
Product_{k>=1} 1/(1 + x^k)^sigma_m(k): this sequence (m=0), A288421 (m=1), A288422 (m=2), A288423 (m=3).
Sequence in context: A074942 A043754 A144191 * A145783 A145785 A094022
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 04 2017
STATUS
approved