login
A173531
a(0)=0: For n>0, a(n) = A060632(n)*A060632(n-1).
3
0, 1, 2, 4, 4, 4, 8, 16, 8, 4, 8, 16, 16, 16, 32, 64, 16, 4, 8, 16, 16, 16, 32, 64, 32, 16, 32, 64, 64, 64, 128, 256, 32, 4, 8, 16, 16, 16, 32, 64, 32, 16, 32, 64, 64, 64, 128, 256, 64, 16, 32, 64, 64, 64, 128, 256, 128, 64, 128, 256, 256
OFFSET
0,3
COMMENTS
First differences of A173530.
Number of triangles (Or V-toothpicks, or L-toothpicks, etc.) added in the three-dimensional structure of A173530 at the n-th stage.
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
Christina Talar Bekaroğlu, Analyzing Dynamics of Larger than Life: Impacts of Rule Parameters on the Evolution of a Bug's Geometry, Master's thesis, Calif. State Univ. Northridge (2023). See p. 92.
Michael De Vlieger, Scatterplot of Log_2 a(n) for n = 1..1024.
EXAMPLE
If written as a triangle, begins:
0;
1;
2;
4,4;
4,8,16,8;
4,8,16,16,16,32,64,16;
4,8,16,16,16,32,64,32,16,32,64,64,64,128,256,32;
4,8,16,16,16,32,64,32,16,32,64,64,64,128,256,64,16,32,64,64,64,128,256,128,...
MATHEMATICA
Prepend[Times @@@ Partition[Array[2^DigitCount[Floor[#/2], 2, 1] &, 120, 0], 2, 1], 0] (* Michael De Vlieger, Jan 11 2024 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Oct 10 2010
STATUS
approved