login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258230
Denominator of Integral_{x=0..1} Product_{k=1..n} (1-x^k) dx.
5
2, 12, 105, 495, 55440, 340340, 1012647636, 12304749600, 5920545668637600, 1098951951860282520, 1572101004939647757775200, 2051717579526635495717258016, 244523633377266327241371614400, 32818916025992059215981780272862841200
OFFSET
1,1
COMMENTS
Limit n->infinity A258229(n) / a(n) = limit n->infinity Integral_{x=0..1} Product_{k=1..n} (1-x^k) dx = 8*sqrt(3/23)*Pi*sinh(sqrt(23)*Pi/6) / (2*cosh(sqrt(23)*Pi/3)-1) = A258232 = 0.368412535931433652321316597327851...
LINKS
StackExchange - Mathematica, No response to an infinite limit
EXAMPLE
Product_{k=1..n} (1-x^k)
n=1 1 - x
n=2 1 - x - x^2 + x^3
n=3 1 - x - x^2 + x^4 + x^5 - x^6
Integral Product_{k=1..n} (1-x^k) dx
n=1 x - x^2/2
n=2 x - x^2/2 - x^3/3 + x^4/4
n=3 x - x^2/2 - x^3/3 + x^5/5 + x^6/6 - x^7/7
For Integral_{x=0..1} set x=1
n=1 1 - 1/2 = 1/2, a(1) = 2
n=2 1 - 1/2 - 1/3 + 1/4 = 5/12, a(2) = 12
n=3 1 - 1/2 - 1/3 + 1/5 + 1/6 - 1/7 = 41/105, a(3) = 105
MATHEMATICA
nmax=15; p=1; Table[p=Expand[p*(1-x^n)]; Total[CoefficientList[p, x]/Range[1, Exponent[p, x]+1]], {n, 1, nmax}] // Denominator
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, May 24 2015
STATUS
approved