login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325975
a(n) = gcd(A325977(n), A325978(n)).
23
1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2, 3
OFFSET
1,6
COMMENTS
See comments in A325979 and A325981.
LINKS
FORMULA
a(n) = gcd(A325977(n), A325978(n)).
a(n) = (1/2)*gcd(A034460(n)+A325313(n), A325814(n)+A325314(n)).
PROG
(PARI)
A048250(n) = factorback(apply(p -> p+1, factor(n)[, 1]));
A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
A325313(n) = (A048250(n) - n);
A325314(n) = (n - A162296(n));
A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
A034460(n) = (A034448(n) - n);
A048146(n) = (sigma(n)-A034448(n));
A325814(n) = (n-A048146(n));
A325977(n) = ((A034460(n)+A325313(n))/2);
A325978(n) = ((A325314(n)+A325814(n))/2);
A325975(n) = gcd(A325977(n), A325978(n));
\\ Or alternatively, as:
A325975(n) = (1/2)*gcd((A034460(n)+A325313(n)), (A325814(n)+A325314(n)));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2019
STATUS
approved