login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326057
a(n) = gcd(A003961(n)-2n, A003961(n)-sigma(n)), where A003961(n) is fully multiplicative function with a(prime(k)) = prime(k+1).
17
1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 1, 1, 1, 43, 1, 3, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 19, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 3, 3, 5, 7, 1, 1, 3, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1
OFFSET
1,6
COMMENTS
Terms a(n) larger than 1 and equal to A252748(n) occur at n = 6, 28, 69, 91, 496, ..., see A326134. See also A349753.
Records 1, 3, 43, 45, 2005, 79243, ... occur at n = 1, 6, 28, 360, 496, 8128, ...
FORMULA
a(n) = gcd(A252748(n), A286385(n)) = gcd(A003961(n) - 2n, A003961(n) - A000203(n)).
a(n) = gcd(A252748(n), A033879(n)) = gcd(A286385(n), A033879(n)). [Also A033880 can be used] - Antti Karttunen, May 06 2024
MATHEMATICA
Array[GCD[#3 - #1, #3 - #2] & @@ {2 #, DivisorSigma[1, #], Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &, 78] (* Michael De Vlieger, Feb 22 2021 *)
PROG
(PARI)
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
A252748(n) = (A003961(n) - (2*n));
A286385(n) = (A003961(n) - sigma(n));
A326057(n) = gcd(A252748(n), A286385(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 06 2019
STATUS
approved