login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326056
a(n) = gcd(sigma(n)-A008833(n)-n, n-A008833(n)), where sigma is the sum of divisors of n, and A008833 is the largest square dividing n.
14
1, 1, 2, 1, 4, 5, 6, 1, 5, 1, 10, 4, 12, 1, 2, 1, 16, 3, 18, 2, 10, 1, 22, 4, 19, 5, 2, 24, 28, 1, 30, 1, 2, 1, 2, 19, 36, 1, 2, 2, 40, 1, 42, 4, 12, 5, 46, 4, 41, 1, 10, 6, 52, 3, 2, 4, 2, 1, 58, 8, 60, 1, 2, 1, 2, 1, 66, 2, 2, 1, 70, 3, 72, 1, 2, 12, 2, 1, 78, 2, 41, 1, 82, 8, 2, 5, 2, 4, 88, 27, 10, 8, 2, 1, 2, 20, 96, 1, 6
OFFSET
1,3
COMMENTS
Composite numbers n such that a(n) = A326055(n) start as: 6, 28, 336, 496, 792, 8128, 31968, 3606912, ...
Nonsquare odd numbers n such that a(n) = abs(A326054(n)) start as: 21, 153, 301, 697, 1333, 1909, 1917, 2041, 3901, 4753, 24601, 24957, 26977, 29161, 29637, 56953, 67077, 96361, ...
FORMULA
a(n) = gcd(A326054(n), A326055(n)) = gcd((A000203(n)-A008833(n))-n, n-A008833(n)).
PROG
(PARI)
A008833(n) = (n/core(n));
A326053(n) = (sigma(n)-A008833(n));
A326054(n) = (A326053(n)-n);
A326055(n) = (n-A008833(n));
A326056(n) = gcd(A326054(n), A326055(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 05 2019
STATUS
approved