login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318805
Array read by antidiagonals: T(n,k) is the number of inequivalent symmetric nonnegative integer n X n matrices with sum of elements equal to k, under row and column permutations.
6
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 4, 2, 1, 1, 6, 8, 4, 2, 1, 1, 8, 13, 9, 4, 2, 1, 1, 10, 22, 16, 9, 4, 2, 1, 1, 13, 33, 32, 17, 9, 4, 2, 1, 1, 15, 52, 57, 35, 17, 9, 4, 2, 1, 1, 18, 76, 105, 68, 36, 17, 9, 4, 2, 1, 1, 21, 108, 178, 139, 71, 36, 17, 9, 4, 2, 1
OFFSET
1,5
FORMULA
T(n,k) = T(k,k) for n > k.
EXAMPLE
Array begins:
===============================================
n\k| 1 2 3 4 5 6 7 8 9 10 11 12
---+-------------------------------------------
1 | 1 1 1 1 1 1 1 1 1 1 1 1 ...
2 | 1 2 3 5 6 8 10 13 15 18 21 25 ...
3 | 1 2 4 8 13 22 33 52 76 108 150 209 ...
4 | 1 2 4 9 16 32 57 105 178 301 490 793 ...
5 | 1 2 4 9 17 35 68 139 264 502 924 1695 ...
6 | 1 2 4 9 17 36 71 151 303 619 1234 2473 ...
7 | 1 2 4 9 17 36 72 154 315 661 1370 2885 ...
8 | 1 2 4 9 17 36 72 155 318 673 1413 3034 ...
9 | 1 2 4 9 17 36 72 155 319 676 1425 3078 ...
...
MATHEMATICA
permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
c[p_List, k_] := SeriesCoefficient[1/(Product[Product[(1 - x^(2*LCM[p[[i]], p[[j]] ]))^GCD[p[[i]], p[[j]]], {j, 1, i - 1}], {i, 2, Length[p]}]* Product[t = p[[i]]; (1 - x^t)^Mod[t, 2]*(1 - x^(2*t))^Quotient[t, 2], {i, 1, Length[p]}]), {x, 0, k}];
T[_, 1] = T[1, _] = 1; T[n_, k_] := (s = 0; Do[s += permcount[p]*c[p, k], {p, IntegerPartitions[n]}]; s/n!);
Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 13 2018, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
c(p, k)={polcoef(1/(prod(i=2, #p, prod(j=1, i-1, (1 - x^(2*lcm(p[i], p[j])) + O(x*x^k))^gcd(p[i], p[j]))) * prod(i=1, #p, my(t=p[i]); (1 - x^t + O(x*x^k))^(t%2)*(1 - x^(2*t) + O(x*x^k))^(t\2) )), k)}
T(n, k)={if(n==0, k==0, my(s=0); forpart(p=n, s+=permcount(p)*c(p, k)); s/n!)}
CROSSREFS
Cf. A318795.
Main diagonal is A316983.
Sequence in context: A104762 A152462 A180360 * A175331 A098805 A168396
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Sep 03 2018
STATUS
approved