login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002125
a(n) = Sum_{k=0..n} f(k)*f(n-k) where f(k) = A002124(k).
(Formerly M0024 N0006)
3
1, 0, 0, 2, 0, 2, 3, 2, 6, 4, 9, 14, 11, 26, 29, 34, 62, 68, 99, 140, 169, 252, 322, 430, 607, 764, 1059, 1424, 1845, 2546, 3344, 4442, 6002, 7876, 10575, 14058, 18575, 24878, 32842, 43630, 58073, 76658, 101913, 134964, 178468, 236776, 312874, 414094, 547947, 723646
OFFSET
0,4
COMMENTS
Arises in studying the Goldbach conjecture.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. A. MacMahon, Properties of prime numbers deduced from the calculus of symmetric functions, Proc. London Math. Soc., 23 (1923), 290-316. = Coll. Papers, II, pp. 354-380. [The sequence I_n]
FORMULA
G.f.: 1/(1 - Sum_{k>=2} x^prime(k))^2. - Ilya Gutkovskiy, Apr 11 2017
MAPLE
M:=120; f:=array(0..M); f[0]:=1; f[1]:=0; f[2]:=0; for n from 3 to M do t1:=0; for k from 2 to n do p := ithprime(k); if p <= n then t1 := t1 + f[n-p]; fi; od: f[n]:=t1; od: # f is A002124
A002125:=array(0..M); for n from 0 to M do A002125[n]:=add(f[t]*f[n-t], t=0..n); od: [seq(A002125[n], n=0..M)];
MATHEMATICA
CoefficientList[Series[1/(1 - Sum[x^Prime[k], {k, 2, 50}])^2, {x, 0, 50}], x] (* Indranil Ghosh, Apr 12 2017 *)
PROG
(Haskell)
a002125 n = a002125_list !! n
a002125_list = uncurry conv $ splitAt 1 a002124_list where
conv xs (z:zs) = sum (zipWith (*) xs $ reverse xs) : conv (z:xs) zs
-- Reinhard Zumkeller, Mar 21 2014
CROSSREFS
Sequence in context: A033769 A333636 A074660 * A375201 A171731 A323212
KEYWORD
nonn
EXTENSIONS
Edited by N. J. A. Sloane, Dec 03 2006
STATUS
approved